diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 2c226411b0c58bcbac04e0c866f4eab09a44a9a7..1d12394a190fad17d5c7b5eeac65a8645819e756 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -801,12 +801,12 @@ turning on some experimental options. ## Caching Data In Memory -Spark SQL can cache tables using an in-memory columnar format by calling `cacheTable("tableName")`. +Spark SQL can cache tables using an in-memory columnar format by calling `sqlContext.cacheTable("tableName")`. Then Spark SQL will scan only required columns and will automatically tune compression to minimize -memory usage and GC pressure. You can call `uncacheTable("tableName")` to remove the table from memory. +memory usage and GC pressure. You can call `sqlContext.uncacheTable("tableName")` to remove the table from memory. -Note that if you call `cache` rather than `cacheTable`, tables will _not_ be cached using -the in-memory columnar format, and therefore `cacheTable` is strongly recommended for this use case. +Note that if you call `schemaRDD.cache()` rather than `sqlContext.cacheTable(...)`, tables will _not_ be cached using +the in-memory columnar format, and therefore `sqlContext.cacheTable(...)` is strongly recommended for this use case. Configuration of in-memory caching can be done using the `setConf` method on SQLContext or by running `SET key=value` commands using SQL.