diff --git a/docs/ml-classification-regression.md b/docs/ml-classification-regression.md
index 5148ad02d93aabdf0b0fae543823677cc306e4cd..557a53cc2314abd79f307e2defd6fb6f910b46a5 100644
--- a/docs/ml-classification-regression.md
+++ b/docs/ml-classification-regression.md
@@ -114,9 +114,15 @@ Continuing the earlier example:
 {% include_example java/org/apache/spark/examples/ml/JavaLogisticRegressionSummaryExample.java %}
 </div>
 
-<!--- TODO: Add python model summaries once implemented -->
 <div data-lang="python" markdown="1">
-Logistic regression model summary is not yet supported in Python.
+[`LogisticRegressionTrainingSummary`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionSummary)
+provides a summary for a
+[`LogisticRegressionModel`](api/python/pyspark.ml.html#pyspark.ml.classification.LogisticRegressionModel).
+Currently, only binary classification is supported. Support for multiclass model summaries will be added in the future.
+
+Continuing the earlier example:
+
+{% include_example python/ml/logistic_regression_summary_example.py %}
 </div>
 
 </div>
diff --git a/examples/src/main/python/ml/logistic_regression_summary_example.py b/examples/src/main/python/ml/logistic_regression_summary_example.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd440a1fbe8df752350e87141820a6957c0ecdd4
--- /dev/null
+++ b/examples/src/main/python/ml/logistic_regression_summary_example.py
@@ -0,0 +1,68 @@
+#
+# Licensed to the Apache Software Foundation (ASF) under one or more
+# contributor license agreements.  See the NOTICE file distributed with
+# this work for additional information regarding copyright ownership.
+# The ASF licenses this file to You under the Apache License, Version 2.0
+# (the "License"); you may not use this file except in compliance with
+# the License.  You may obtain a copy of the License at
+#
+#    http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from __future__ import print_function
+
+# $example on$
+from pyspark.ml.classification import LogisticRegression
+# $example off$
+from pyspark.sql import SparkSession
+
+"""
+An example demonstrating Logistic Regression Summary.
+Run with:
+  bin/spark-submit examples/src/main/python/ml/logistic_regression_summary_example.py
+"""
+
+if __name__ == "__main__":
+    spark = SparkSession \
+        .builder \
+        .appName("LogisticRegressionSummary") \
+        .getOrCreate()
+
+    # Load training data
+    training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
+
+    lr = LogisticRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
+
+    # Fit the model
+    lrModel = lr.fit(training)
+
+    # $example on$
+    # Extract the summary from the returned LogisticRegressionModel instance trained
+    # in the earlier example
+    trainingSummary = lrModel.summary
+
+    # Obtain the objective per iteration
+    objectiveHistory = trainingSummary.objectiveHistory
+    print("objectiveHistory:")
+    for objective in objectiveHistory:
+        print(objective)
+
+    # Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
+    trainingSummary.roc.show()
+    print("areaUnderROC: " + str(trainingSummary.areaUnderROC))
+
+    # Set the model threshold to maximize F-Measure
+    fMeasure = trainingSummary.fMeasureByThreshold
+    maxFMeasure = fMeasure.groupBy().max('F-Measure').select('max(F-Measure)').head()
+    bestThreshold = fMeasure.where(fMeasure['F-Measure'] == maxFMeasure['max(F-Measure)']) \
+        .select('threshold').head()['threshold']
+    lr.setThreshold(bestThreshold)
+    # $example off$
+
+    spark.stop()