diff --git a/R/pkg/R/mllib_clustering.R b/R/pkg/R/mllib_clustering.R index c44358838703fb0ba0d0f9fa9d0215314354cb13..ca5182d527cfe2583c66be63cc5d086bd0b7afe4 100644 --- a/R/pkg/R/mllib_clustering.R +++ b/R/pkg/R/mllib_clustering.R @@ -175,6 +175,10 @@ setMethod("write.ml", signature(object = "GaussianMixtureModel", path = "charact #' @param k number of centers. #' @param maxIter maximum iteration number. #' @param initMode the initialization algorithm choosen to fit the model. +#' @param seed the random seed for cluster initialization. +#' @param initSteps the number of steps for the k-means|| initialization mode. +#' This is an advanced setting, the default of 2 is almost always enough. Must be > 0. +#' @param tol convergence tolerance of iterations. #' @param ... additional argument(s) passed to the method. #' @return \code{spark.kmeans} returns a fitted k-means model. #' @rdname spark.kmeans @@ -204,11 +208,16 @@ setMethod("write.ml", signature(object = "GaussianMixtureModel", path = "charact #' @note spark.kmeans since 2.0.0 #' @seealso \link{predict}, \link{read.ml}, \link{write.ml} setMethod("spark.kmeans", signature(data = "SparkDataFrame", formula = "formula"), - function(data, formula, k = 2, maxIter = 20, initMode = c("k-means||", "random")) { + function(data, formula, k = 2, maxIter = 20, initMode = c("k-means||", "random"), + seed = NULL, initSteps = 2, tol = 1E-4) { formula <- paste(deparse(formula), collapse = "") initMode <- match.arg(initMode) + if (!is.null(seed)) { + seed <- as.character(as.integer(seed)) + } jobj <- callJStatic("org.apache.spark.ml.r.KMeansWrapper", "fit", data@sdf, formula, - as.integer(k), as.integer(maxIter), initMode) + as.integer(k), as.integer(maxIter), initMode, seed, + as.integer(initSteps), as.numeric(tol)) new("KMeansModel", jobj = jobj) }) diff --git a/R/pkg/inst/tests/testthat/test_mllib_clustering.R b/R/pkg/inst/tests/testthat/test_mllib_clustering.R index 1980fffd80cc66fa4e7022314f74ddaca3a3f934..f013991002a0202425802045dfe9e04af8add85e 100644 --- a/R/pkg/inst/tests/testthat/test_mllib_clustering.R +++ b/R/pkg/inst/tests/testthat/test_mllib_clustering.R @@ -132,6 +132,26 @@ test_that("spark.kmeans", { expect_true(summary2$is.loaded) unlink(modelPath) + + # Test Kmeans on dataset that is sensitive to seed value + col1 <- c(1, 2, 3, 4, 0, 1, 2, 3, 4, 0) + col2 <- c(1, 2, 3, 4, 0, 1, 2, 3, 4, 0) + col3 <- c(1, 2, 3, 4, 0, 1, 2, 3, 4, 0) + cols <- as.data.frame(cbind(col1, col2, col3)) + df <- createDataFrame(cols) + + model1 <- spark.kmeans(data = df, ~ ., k = 5, maxIter = 10, + initMode = "random", seed = 1, tol = 1E-5) + model2 <- spark.kmeans(data = df, ~ ., k = 5, maxIter = 10, + initMode = "random", seed = 22222, tol = 1E-5) + + fitted.model1 <- fitted(model1) + fitted.model2 <- fitted(model2) + # The predicted clusters are different + expect_equal(sort(collect(distinct(select(fitted.model1, "prediction")))$prediction), + c(0, 1, 2, 3)) + expect_equal(sort(collect(distinct(select(fitted.model2, "prediction")))$prediction), + c(0, 1, 2)) }) test_that("spark.lda with libsvm", { diff --git a/mllib/src/main/scala/org/apache/spark/ml/r/KMeansWrapper.scala b/mllib/src/main/scala/org/apache/spark/ml/r/KMeansWrapper.scala index ea9458525aa31472fab4e3f79d9c3de2126cb238..a1fefd31c0579263e149e8199558cc16f8bd3c8a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/r/KMeansWrapper.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/r/KMeansWrapper.scala @@ -68,7 +68,10 @@ private[r] object KMeansWrapper extends MLReadable[KMeansWrapper] { formula: String, k: Int, maxIter: Int, - initMode: String): KMeansWrapper = { + initMode: String, + seed: String, + initSteps: Int, + tol: Double): KMeansWrapper = { val rFormula = new RFormula() .setFormula(formula) @@ -87,6 +90,10 @@ private[r] object KMeansWrapper extends MLReadable[KMeansWrapper] { .setMaxIter(maxIter) .setInitMode(initMode) .setFeaturesCol(rFormula.getFeaturesCol) + .setInitSteps(initSteps) + .setTol(tol) + + if (seed != null && seed.length > 0) kMeans.setSeed(seed.toInt) val pipeline = new Pipeline() .setStages(Array(rFormulaModel, kMeans))