diff --git a/mllib/src/main/scala/org/apache/spark/mllib/rdd/RandomRDD.scala b/mllib/src/main/scala/org/apache/spark/mllib/rdd/RandomRDD.scala index c8db3910c6eab23b621562f37eaeb87460203404..910eff9540a47d8fbd4f2158b72a33e3aac1040a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/rdd/RandomRDD.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/rdd/RandomRDD.scala @@ -105,16 +105,16 @@ private[mllib] object RandomRDD { def getPointIterator[T: ClassTag](partition: RandomRDDPartition[T]): Iterator[T] = { val generator = partition.generator.copy() generator.setSeed(partition.seed) - Array.fill(partition.size)(generator.nextValue()).toIterator + Iterator.fill(partition.size)(generator.nextValue()) } // The RNG has to be reset every time the iterator is requested to guarantee same data // every time the content of the RDD is examined. - def getVectorIterator(partition: RandomRDDPartition[Double], - vectorSize: Int): Iterator[Vector] = { + def getVectorIterator( + partition: RandomRDDPartition[Double], + vectorSize: Int): Iterator[Vector] = { val generator = partition.generator.copy() generator.setSeed(partition.seed) - Array.fill(partition.size)(new DenseVector( - (0 until vectorSize).map { _ => generator.nextValue() }.toArray)).toIterator + Iterator.fill(partition.size)(new DenseVector(Array.fill(vectorSize)(generator.nextValue()))) } }