From 78062b8521bb02900baeec31992d697fa677f122 Mon Sep 17 00:00:00 2001 From: Andrew Ray <ray.andrew@gmail.com> Date: Thu, 15 Dec 2016 23:32:10 -0800 Subject: [PATCH] [SPARK-18845][GRAPHX] PageRank has incorrect initialization value that leads to slow convergence ## What changes were proposed in this pull request? Change the initial value in all PageRank implementations to be `1.0` instead of `resetProb` (default `0.15`) and use `outerJoinVertices` instead of `joinVertices` so that source vertices get updated in each iteration. This seems to have been introduced a long time ago in https://github.com/apache/spark/commit/15a564598fe63003652b1e24527c432080b5976c#diff-b2bf3f97dcd2f19d61c921836159cda9L90 With the exception of graphs with sinks (which currently give incorrect results see SPARK-18847) this gives faster convergence as the sum of ranks is already correct (sum of ranks should be number of vertices). Convergence comparision benchmark for small graph: http://imgur.com/a/HkkZf Code for benchmark: https://gist.github.com/aray/a7de1f3801a810f8b1fa00c271a1fefd ## How was this patch tested? (corrected) existing unit tests and additional test that verifies against result of igraph and NetworkX on a loop with a source. Author: Andrew Ray <ray.andrew@gmail.com> Closes #16271 from aray/pagerank-initial-value. --- .../apache/spark/graphx/lib/PageRank.scala | 24 ++++++------- .../spark/graphx/lib/PageRankSuite.scala | 34 ++++++++++++++++--- 2 files changed, 42 insertions(+), 16 deletions(-) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala b/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala index feb3f47667..37b6e45359 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala @@ -115,9 +115,9 @@ object PageRank extends Logging { val src: VertexId = srcId.getOrElse(-1L) // Initialize the PageRank graph with each edge attribute having - // weight 1/outDegree and each vertex with attribute resetProb. + // weight 1/outDegree and each vertex with attribute 1.0. // When running personalized pagerank, only the source vertex - // has an attribute resetProb. All others are set to 0. + // has an attribute 1.0. All others are set to 0. var rankGraph: Graph[Double, Double] = graph // Associate the degree with each vertex .outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) } @@ -125,7 +125,7 @@ object PageRank extends Logging { .mapTriplets( e => 1.0 / e.srcAttr, TripletFields.Src ) // Set the vertex attributes to the initial pagerank values .mapVertices { (id, attr) => - if (!(id != src && personalized)) resetProb else 0.0 + if (!(id != src && personalized)) 1.0 else 0.0 } def delta(u: VertexId, v: VertexId): Double = { if (u == v) 1.0 else 0.0 } @@ -150,8 +150,8 @@ object PageRank extends Logging { (src: VertexId, id: VertexId) => resetProb } - rankGraph = rankGraph.joinVertices(rankUpdates) { - (id, oldRank, msgSum) => rPrb(src, id) + (1.0 - resetProb) * msgSum + rankGraph = rankGraph.outerJoinVertices(rankUpdates) { + (id, oldRank, msgSumOpt) => rPrb(src, id) + (1.0 - resetProb) * msgSumOpt.getOrElse(0.0) }.cache() rankGraph.edges.foreachPartition(x => {}) // also materializes rankGraph.vertices @@ -196,7 +196,7 @@ object PageRank extends Logging { // we won't be able to store its activations in a sparse vector val zero = Vectors.sparse(sources.size, List()).asBreeze val sourcesInitMap = sources.zipWithIndex.map { case (vid, i) => - val v = Vectors.sparse(sources.size, Array(i), Array(resetProb)).asBreeze + val v = Vectors.sparse(sources.size, Array(i), Array(1.0)).asBreeze (vid, v) }.toMap val sc = graph.vertices.sparkContext @@ -225,11 +225,11 @@ object PageRank extends Logging { ctx => ctx.sendToDst(ctx.srcAttr :* ctx.attr), (a : BV[Double], b : BV[Double]) => a :+ b, TripletFields.Src) - rankGraph = rankGraph.joinVertices(rankUpdates) { - (vid, oldRank, msgSum) => - val popActivations: BV[Double] = msgSum :* (1.0 - resetProb) + rankGraph = rankGraph.outerJoinVertices(rankUpdates) { + (vid, oldRank, msgSumOpt) => + val popActivations: BV[Double] = msgSumOpt.getOrElse(zero) :* (1.0 - resetProb) val resetActivations = if (sourcesInitMapBC.value contains vid) { - sourcesInitMapBC.value(vid) + sourcesInitMapBC.value(vid) :* resetProb } else { zero } @@ -307,7 +307,7 @@ object PageRank extends Logging { .mapTriplets( e => 1.0 / e.srcAttr ) // Set the vertex attributes to (initialPR, delta = 0) .mapVertices { (id, attr) => - if (id == src) (resetProb, Double.NegativeInfinity) else (0.0, 0.0) + if (id == src) (1.0, Double.NegativeInfinity) else (0.0, 0.0) } .cache() @@ -323,7 +323,7 @@ object PageRank extends Logging { msgSum: Double): (Double, Double) = { val (oldPR, lastDelta) = attr var teleport = oldPR - val delta = if (src==id) 1.0 else 0.0 + val delta = if (src==id) resetProb else 0.0 teleport = oldPR*delta val newPR = teleport + (1.0 - resetProb) * msgSum diff --git a/graphx/src/test/scala/org/apache/spark/graphx/lib/PageRankSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/lib/PageRankSuite.scala index b6305c8d00..6afbb5a959 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/lib/PageRankSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/lib/PageRankSuite.scala @@ -41,7 +41,7 @@ object GridPageRank { } } // compute the pagerank - var pr = Array.fill(nRows * nCols)(resetProb) + var pr = Array.fill(nRows * nCols)(1.0) for (iter <- 0 until nIter) { val oldPr = pr pr = new Array[Double](nRows * nCols) @@ -70,10 +70,10 @@ class PageRankSuite extends SparkFunSuite with LocalSparkContext { val resetProb = 0.15 val errorTol = 1.0e-5 - val staticRanks1 = starGraph.staticPageRank(numIter = 1, resetProb).vertices - val staticRanks2 = starGraph.staticPageRank(numIter = 2, resetProb).vertices.cache() + val staticRanks1 = starGraph.staticPageRank(numIter = 2, resetProb).vertices + val staticRanks2 = starGraph.staticPageRank(numIter = 3, resetProb).vertices.cache() - // Static PageRank should only take 2 iterations to converge + // Static PageRank should only take 3 iterations to converge val notMatching = staticRanks1.innerZipJoin(staticRanks2) { (vid, pr1, pr2) => if (pr1 != pr2) 1 else 0 }.map { case (vid, test) => test }.sum() @@ -203,4 +203,30 @@ class PageRankSuite extends SparkFunSuite with LocalSparkContext { assert(compareRanks(staticRanks, parallelStaticRanks) < errorTol) } } + + test("Loop with source PageRank") { + withSpark { sc => + val edges = sc.parallelize((1L, 2L) :: (2L, 3L) :: (3L, 4L) :: (4L, 2L) :: Nil) + val g = Graph.fromEdgeTuples(edges, 1) + val resetProb = 0.15 + val tol = 0.0001 + val numIter = 50 + val errorTol = 1.0e-5 + + val staticRanks = g.staticPageRank(numIter, resetProb).vertices + val dynamicRanks = g.pageRank(tol, resetProb).vertices + assert(compareRanks(staticRanks, dynamicRanks) < errorTol) + + // Computed in igraph 1.0 w/ R bindings: + // > page_rank(graph_from_literal( A -+ B -+ C -+ D -+ B)) + // Alternatively in NetworkX 1.11: + // > nx.pagerank(nx.DiGraph([(1,2),(2,3),(3,4),(4,2)])) + // We multiply by the number of vertices to account for difference in normalization + val igraphPR = Seq(0.0375000, 0.3326045, 0.3202138, 0.3096817).map(_ * 4) + val ranks = VertexRDD(sc.parallelize(1L to 4L zip igraphPR)) + assert(compareRanks(staticRanks, ranks) < errorTol) + assert(compareRanks(dynamicRanks, ranks) < errorTol) + + } + } } -- GitLab