diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/columnar/InMemoryTableScanExec.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/columnar/InMemoryTableScanExec.scala index 214e8d309de1108831d5846ce4f60d229fa2daf2..7063b08f7c64406c70ec43afbc46a1eb9e9b0ea8 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/columnar/InMemoryTableScanExec.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/columnar/InMemoryTableScanExec.scala @@ -42,7 +42,9 @@ case class InMemoryTableScanExec( override def output: Seq[Attribute] = attributes private def updateAttribute(expr: Expression): Expression = { - val attrMap = AttributeMap(relation.child.output.zip(output)) + // attributes can be pruned so using relation's output. + // E.g., relation.output is [id, item] but this scan's output can be [item] only. + val attrMap = AttributeMap(relation.child.output.zip(relation.output)) expr.transform { case attr: Attribute => attrMap.getOrElse(attr, attr) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/columnar/InMemoryColumnarQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/columnar/InMemoryColumnarQuerySuite.scala index 1e6a6a8ba3362ea133df94a329d71802a6f8e8e1..109b1d9db60d2552bbc1f69212badf4ebf9e935f 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/execution/columnar/InMemoryColumnarQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/columnar/InMemoryColumnarQuerySuite.scala @@ -414,4 +414,19 @@ class InMemoryColumnarQuerySuite extends QueryTest with SharedSQLContext { assert(partitionedAttrs.subsetOf(inMemoryScan.outputSet)) } } + + test("SPARK-20356: pruned InMemoryTableScanExec should have correct ordering and partitioning") { + withSQLConf("spark.sql.shuffle.partitions" -> "200") { + val df1 = Seq(("a", 1), ("b", 1), ("c", 2)).toDF("item", "group") + val df2 = Seq(("a", 1), ("b", 2), ("c", 3)).toDF("item", "id") + val df3 = df1.join(df2, Seq("item")).select($"id", $"group".as("item")).distinct() + + df3.unpersist() + val agg_without_cache = df3.groupBy($"item").count() + + df3.cache() + val agg_with_cache = df3.groupBy($"item").count() + checkAnswer(agg_without_cache, agg_with_cache) + } + } }