diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
index bf3c3fe876873032d9a911cb109e01ed8d28e16c..481ed4924857e61822d2ae9f45cdaebcd7d858b0 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
@@ -192,6 +192,127 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
    */
   def fill(valueMap: Map[String, Any]): DataFrame = fill0(valueMap.toSeq)
 
+  /**
+   * Replaces values matching keys in `replacement` map with the corresponding values.
+   * Key and value of `replacement` map must have the same type, and can only be doubles or strings.
+   * If `col` is "*", then the replacement is applied on all string columns or numeric columns.
+   *
+   * {{{
+   *   import com.google.common.collect.ImmutableMap;
+   *
+   *   // Replaces all occurrences of 1.0 with 2.0 in column "height".
+   *   df.replace("height", ImmutableMap.of(1.0, 2.0));
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name".
+   *   df.replace("name", ImmutableMap.of("UNKNOWN", "unnamed"));
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns.
+   *   df.replace("*", ImmutableMap.of("UNKNOWN", "unnamed"));
+   * }}}
+   *
+   * @param col name of the column to apply the value replacement
+   * @param replacement value replacement map, as explained above
+   */
+  def replace[T](col: String, replacement: java.util.Map[T, T]): DataFrame = {
+    replace[T](col, replacement.toMap : Map[T, T])
+  }
+
+  /**
+   * Replaces values matching keys in `replacement` map with the corresponding values.
+   * Key and value of `replacement` map must have the same type, and can only be doubles or strings.
+   *
+   * {{{
+   *   import com.google.common.collect.ImmutableMap;
+   *
+   *   // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight".
+   *   df.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0));
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname".
+   *   df.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed"));
+   * }}}
+   *
+   * @param cols list of columns to apply the value replacement
+   * @param replacement value replacement map, as explained above
+   */
+  def replace[T](cols: Array[String], replacement: java.util.Map[T, T]): DataFrame = {
+    replace(cols.toSeq, replacement.toMap)
+  }
+
+  /**
+   * (Scala-specific) Replaces values matching keys in `replacement` map.
+   * Key and value of `replacement` map must have the same type, and can only be doubles or strings.
+   * If `col` is "*", then the replacement is applied on all string columns or numeric columns.
+   *
+   * {{{
+   *   // Replaces all occurrences of 1.0 with 2.0 in column "height".
+   *   df.replace("height", Map(1.0 -> 2.0))
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name".
+   *   df.replace("name", Map("UNKNOWN" -> "unnamed")
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns.
+   *   df.replace("*", Map("UNKNOWN" -> "unnamed")
+   * }}}
+   *
+   * @param col name of the column to apply the value replacement
+   * @param replacement value replacement map, as explained above
+   */
+  def replace[T](col: String, replacement: Map[T, T]): DataFrame = {
+    if (col == "*") {
+      replace0(df.columns, replacement)
+    } else {
+      replace0(Seq(col), replacement)
+    }
+  }
+
+  /**
+   * (Scala-specific) Replaces values matching keys in `replacement` map.
+   * Key and value of `replacement` map must have the same type, and can only be doubles or strings.
+   *
+   * {{{
+   *   // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight".
+   *   df.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0));
+   *
+   *   // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname".
+   *   df.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed");
+   * }}}
+   *
+   * @param cols list of columns to apply the value replacement
+   * @param replacement value replacement map, as explained above
+   */
+  def replace[T](cols: Seq[String], replacement: Map[T, T]): DataFrame = replace0(cols, replacement)
+
+  private def replace0[T](cols: Seq[String], replacement: Map[T, T]): DataFrame = {
+    if (replacement.isEmpty || cols.isEmpty) {
+      return df
+    }
+
+    // replacementMap is either Map[String, String] or Map[Double, Double]
+    val replacementMap: Map[_, _] = replacement.head._2 match {
+      case v: String => replacement
+      case _ => replacement.map { case (k, v) => (convertToDouble(k), convertToDouble(v)) }
+    }
+
+    // targetColumnType is either DoubleType or StringType
+    val targetColumnType = replacement.head._1 match {
+      case _: jl.Double | _: jl.Float | _: jl.Integer | _: jl.Long => DoubleType
+      case _: String => StringType
+    }
+
+    val columnEquals = df.sqlContext.analyzer.resolver
+    val projections = df.schema.fields.map { f =>
+      val shouldReplace = cols.exists(colName => columnEquals(colName, f.name))
+      if (f.dataType.isInstanceOf[NumericType] && targetColumnType == DoubleType && shouldReplace) {
+        replaceCol(f, replacementMap)
+      } else if (f.dataType == targetColumnType && shouldReplace) {
+        replaceCol(f, replacementMap)
+      } else {
+        df.col(f.name)
+      }
+    }
+    df.select(projections : _*)
+  }
+
   private def fill0(values: Seq[(String, Any)]): DataFrame = {
     // Error handling
     values.foreach { case (colName, replaceValue) =>
@@ -228,4 +349,27 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   private def fillCol[T](col: StructField, replacement: T): Column = {
     coalesce(df.col(col.name), lit(replacement).cast(col.dataType)).as(col.name)
   }
+
+  /**
+   * Returns a [[Column]] expression that replaces value matching key in `replacementMap` with
+   * value in `replacementMap`, using [[CaseWhen]].
+   *
+   * TODO: This can be optimized to use broadcast join when replacementMap is large.
+   */
+  private def replaceCol(col: StructField, replacementMap: Map[_, _]): Column = {
+    val branches: Seq[Expression] = replacementMap.flatMap { case (source, target) =>
+      df.col(col.name).equalTo(lit(source).cast(col.dataType)).expr ::
+        lit(target).cast(col.dataType).expr :: Nil
+    }.toSeq
+    new Column(CaseWhen(branches ++ Seq(df.col(col.name).expr))).as(col.name)
+  }
+
+  private def convertToDouble(v: Any): Double = v match {
+    case v: Float => v.toDouble
+    case v: Double => v
+    case v: Long => v.toDouble
+    case v: Int => v.toDouble
+    case v => throw new IllegalArgumentException(
+      s"Unsupported value type ${v.getClass.getName} ($v).")
+  }
 }
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala
index 0896f175c056fe6aef27231a39f53f0fea389294..41b4f02e6a294b3d2db12fb1d49a0b2ce0cd58a8 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameNaFunctionsSuite.scala
@@ -154,4 +154,38 @@ class DataFrameNaFunctionsSuite extends QueryTest {
       ))),
       Row("test", null, 1, 2.2))
   }
+
+  test("replace") {
+    val input = createDF()
+
+    // Replace two numeric columns: age and height
+    val out = input.na.replace(Seq("age", "height"), Map(
+      16 -> 61,
+      60 -> 6,
+      164.3 -> 461.3  // Alice is really tall
+    ))
+
+    checkAnswer(
+      out,
+      Row("Bob", 61, 176.5) ::
+        Row("Alice", null, 461.3) ::
+        Row("David", 6, null) ::
+        Row("Amy", null, null) ::
+        Row(null, null, null) :: Nil)
+
+    // Replace only the age column
+    val out1 = input.na.replace("age", Map(
+      16 -> 61,
+      60 -> 6,
+      164.3 -> 461.3  // Alice is really tall
+    ))
+
+    checkAnswer(
+      out1,
+      Row("Bob", 61, 176.5) ::
+        Row("Alice", null, 164.3) ::
+        Row("David", 6, null) ::
+        Row("Amy", null, null) ::
+        Row(null, null, null) :: Nil)
+  }
 }