diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index 3441ccf53b45b7ced8f1d2ada057b7f05d2f80f9..7cfae5ce283bfa7e589fd0310b4b9ac44b62f33f 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -20,7 +20,6 @@ package org.apache.spark.sql.execution import org.apache.spark.rdd.RDD import org.apache.spark.sql.{execution, SaveMode, Strategy} import org.apache.spark.sql.catalyst.InternalRow -import org.apache.spark.sql.catalyst.catalog.CatalogTableType import org.apache.spark.sql.catalyst.encoders.RowEncoder import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.planning._ @@ -387,7 +386,7 @@ abstract class SparkStrategies extends QueryPlanner[SparkPlan] { case e @ logical.Expand(_, _, child) => execution.ExpandExec(e.projections, e.output, planLater(child)) :: Nil case logical.Window(windowExprs, partitionSpec, orderSpec, child) => - execution.WindowExec(windowExprs, partitionSpec, orderSpec, planLater(child)) :: Nil + execution.window.WindowExec(windowExprs, partitionSpec, orderSpec, planLater(child)) :: Nil case logical.Sample(lb, ub, withReplacement, seed, child) => execution.SampleExec(lb, ub, withReplacement, seed, planLater(child)) :: Nil case logical.LocalRelation(output, data) => diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/WindowExec.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/WindowExec.scala deleted file mode 100644 index 9d006d21d9440a54ece6b63f698abab5c99690c9..0000000000000000000000000000000000000000 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/WindowExec.scala +++ /dev/null @@ -1,1013 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.sql.execution - -import java.util - -import scala.collection.mutable -import scala.collection.mutable.ArrayBuffer - -import org.apache.spark.{SparkEnv, TaskContext} -import org.apache.spark.rdd.RDD -import org.apache.spark.sql.catalyst.InternalRow -import org.apache.spark.sql.catalyst.expressions._ -import org.apache.spark.sql.catalyst.expressions.aggregate._ -import org.apache.spark.sql.catalyst.plans.physical._ -import org.apache.spark.sql.types.IntegerType -import org.apache.spark.util.collection.unsafe.sort.{UnsafeExternalSorter, UnsafeSorterIterator} - -/** - * This class calculates and outputs (windowed) aggregates over the rows in a single (sorted) - * partition. The aggregates are calculated for each row in the group. Special processing - * instructions, frames, are used to calculate these aggregates. Frames are processed in the order - * specified in the window specification (the ORDER BY ... clause). There are four different frame - * types: - * - Entire partition: The frame is the entire partition, i.e. - * UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. For this case, window function will take all - * rows as inputs and be evaluated once. - * - Growing frame: We only add new rows into the frame, i.e. UNBOUNDED PRECEDING AND .... - * Every time we move to a new row to process, we add some rows to the frame. We do not remove - * rows from this frame. - * - Shrinking frame: We only remove rows from the frame, i.e. ... AND UNBOUNDED FOLLOWING. - * Every time we move to a new row to process, we remove some rows from the frame. We do not add - * rows to this frame. - * - Moving frame: Every time we move to a new row to process, we remove some rows from the frame - * and we add some rows to the frame. Examples are: - * 1 PRECEDING AND CURRENT ROW and 1 FOLLOWING AND 2 FOLLOWING. - * - Offset frame: The frame consist of one row, which is an offset number of rows away from the - * current row. Only [[OffsetWindowFunction]]s can be processed in an offset frame. - * - * Different frame boundaries can be used in Growing, Shrinking and Moving frames. A frame - * boundary can be either Row or Range based: - * - Row Based: A row based boundary is based on the position of the row within the partition. - * An offset indicates the number of rows above or below the current row, the frame for the - * current row starts or ends. For instance, given a row based sliding frame with a lower bound - * offset of -1 and a upper bound offset of +2. The frame for row with index 5 would range from - * index 4 to index 6. - * - Range based: A range based boundary is based on the actual value of the ORDER BY - * expression(s). An offset is used to alter the value of the ORDER BY expression, for - * instance if the current order by expression has a value of 10 and the lower bound offset - * is -3, the resulting lower bound for the current row will be 10 - 3 = 7. This however puts a - * number of constraints on the ORDER BY expressions: there can be only one expression and this - * expression must have a numerical data type. An exception can be made when the offset is 0, - * because no value modification is needed, in this case multiple and non-numeric ORDER BY - * expression are allowed. - * - * This is quite an expensive operator because every row for a single group must be in the same - * partition and partitions must be sorted according to the grouping and sort order. The operator - * requires the planner to take care of the partitioning and sorting. - * - * The operator is semi-blocking. The window functions and aggregates are calculated one group at - * a time, the result will only be made available after the processing for the entire group has - * finished. The operator is able to process different frame configurations at the same time. This - * is done by delegating the actual frame processing (i.e. calculation of the window functions) to - * specialized classes, see [[WindowFunctionFrame]], which take care of their own frame type: - * Entire Partition, Sliding, Growing & Shrinking. Boundary evaluation is also delegated to a pair - * of specialized classes: [[RowBoundOrdering]] & [[RangeBoundOrdering]]. - */ -case class WindowExec( - windowExpression: Seq[NamedExpression], - partitionSpec: Seq[Expression], - orderSpec: Seq[SortOrder], - child: SparkPlan) - extends UnaryExecNode { - - override def output: Seq[Attribute] = - child.output ++ windowExpression.map(_.toAttribute) - - override def requiredChildDistribution: Seq[Distribution] = { - if (partitionSpec.isEmpty) { - // Only show warning when the number of bytes is larger than 100 MB? - logWarning("No Partition Defined for Window operation! Moving all data to a single " - + "partition, this can cause serious performance degradation.") - AllTuples :: Nil - } else ClusteredDistribution(partitionSpec) :: Nil - } - - override def requiredChildOrdering: Seq[Seq[SortOrder]] = - Seq(partitionSpec.map(SortOrder(_, Ascending)) ++ orderSpec) - - override def outputOrdering: Seq[SortOrder] = child.outputOrdering - - /** - * Create a bound ordering object for a given frame type and offset. A bound ordering object is - * used to determine which input row lies within the frame boundaries of an output row. - * - * This method uses Code Generation. It can only be used on the executor side. - * - * @param frameType to evaluate. This can either be Row or Range based. - * @param offset with respect to the row. - * @return a bound ordering object. - */ - private[this] def createBoundOrdering(frameType: FrameType, offset: Int): BoundOrdering = { - frameType match { - case RangeFrame => - val (exprs, current, bound) = if (offset == 0) { - // Use the entire order expression when the offset is 0. - val exprs = orderSpec.map(_.child) - val buildProjection = () => newMutableProjection(exprs, child.output) - (orderSpec, buildProjection(), buildProjection()) - } else if (orderSpec.size == 1) { - // Use only the first order expression when the offset is non-null. - val sortExpr = orderSpec.head - val expr = sortExpr.child - // Create the projection which returns the current 'value'. - val current = newMutableProjection(expr :: Nil, child.output) - // Flip the sign of the offset when processing the order is descending - val boundOffset = sortExpr.direction match { - case Descending => -offset - case Ascending => offset - } - // Create the projection which returns the current 'value' modified by adding the offset. - val boundExpr = Add(expr, Cast(Literal.create(boundOffset, IntegerType), expr.dataType)) - val bound = newMutableProjection(boundExpr :: Nil, child.output) - (sortExpr :: Nil, current, bound) - } else { - sys.error("Non-Zero range offsets are not supported for windows " + - "with multiple order expressions.") - } - // Construct the ordering. This is used to compare the result of current value projection - // to the result of bound value projection. This is done manually because we want to use - // Code Generation (if it is enabled). - val sortExprs = exprs.zipWithIndex.map { case (e, i) => - SortOrder(BoundReference(i, e.dataType, e.nullable), e.direction) - } - val ordering = newOrdering(sortExprs, Nil) - RangeBoundOrdering(ordering, current, bound) - case RowFrame => RowBoundOrdering(offset) - } - } - - /** - * Collection containing an entry for each window frame to process. Each entry contains a frames' - * WindowExpressions and factory function for the WindowFrameFunction. - */ - private[this] lazy val windowFrameExpressionFactoryPairs = { - type FrameKey = (String, FrameType, Option[Int], Option[Int]) - type ExpressionBuffer = mutable.Buffer[Expression] - val framedFunctions = mutable.Map.empty[FrameKey, (ExpressionBuffer, ExpressionBuffer)] - - // Add a function and its function to the map for a given frame. - def collect(tpe: String, fr: SpecifiedWindowFrame, e: Expression, fn: Expression): Unit = { - val key = (tpe, fr.frameType, FrameBoundary(fr.frameStart), FrameBoundary(fr.frameEnd)) - val (es, fns) = framedFunctions.getOrElseUpdate( - key, (ArrayBuffer.empty[Expression], ArrayBuffer.empty[Expression])) - es += e - fns += fn - } - - // Collect all valid window functions and group them by their frame. - windowExpression.foreach { x => - x.foreach { - case e @ WindowExpression(function, spec) => - val frame = spec.frameSpecification.asInstanceOf[SpecifiedWindowFrame] - function match { - case AggregateExpression(f, _, _, _) => collect("AGGREGATE", frame, e, f) - case f: AggregateWindowFunction => collect("AGGREGATE", frame, e, f) - case f: OffsetWindowFunction => collect("OFFSET", frame, e, f) - case f => sys.error(s"Unsupported window function: $f") - } - case _ => - } - } - - // Map the groups to a (unbound) expression and frame factory pair. - var numExpressions = 0 - framedFunctions.toSeq.map { - case (key, (expressions, functionSeq)) => - val ordinal = numExpressions - val functions = functionSeq.toArray - - // Construct an aggregate processor if we need one. - def processor = AggregateProcessor( - functions, - ordinal, - child.output, - (expressions, schema) => - newMutableProjection(expressions, schema, subexpressionEliminationEnabled)) - - // Create the factory - val factory = key match { - // Offset Frame - case ("OFFSET", RowFrame, Some(offset), Some(h)) if offset == h => - target: MutableRow => - new OffsetWindowFunctionFrame( - target, - ordinal, - // OFFSET frame functions are guaranteed be OffsetWindowFunctions. - functions.map(_.asInstanceOf[OffsetWindowFunction]), - child.output, - (expressions, schema) => - newMutableProjection(expressions, schema, subexpressionEliminationEnabled), - offset) - - // Growing Frame. - case ("AGGREGATE", frameType, None, Some(high)) => - target: MutableRow => { - new UnboundedPrecedingWindowFunctionFrame( - target, - processor, - createBoundOrdering(frameType, high)) - } - - // Shrinking Frame. - case ("AGGREGATE", frameType, Some(low), None) => - target: MutableRow => { - new UnboundedFollowingWindowFunctionFrame( - target, - processor, - createBoundOrdering(frameType, low)) - } - - // Moving Frame. - case ("AGGREGATE", frameType, Some(low), Some(high)) => - target: MutableRow => { - new SlidingWindowFunctionFrame( - target, - processor, - createBoundOrdering(frameType, low), - createBoundOrdering(frameType, high)) - } - - // Entire Partition Frame. - case ("AGGREGATE", frameType, None, None) => - target: MutableRow => { - new UnboundedWindowFunctionFrame(target, processor) - } - } - - // Keep track of the number of expressions. This is a side-effect in a map... - numExpressions += expressions.size - - // Create the Frame Expression - Factory pair. - (expressions, factory) - } - } - - /** - * Create the resulting projection. - * - * This method uses Code Generation. It can only be used on the executor side. - * - * @param expressions unbound ordered function expressions. - * @return the final resulting projection. - */ - private[this] def createResultProjection( - expressions: Seq[Expression]): UnsafeProjection = { - val references = expressions.zipWithIndex.map{ case (e, i) => - // Results of window expressions will be on the right side of child's output - BoundReference(child.output.size + i, e.dataType, e.nullable) - } - val unboundToRefMap = expressions.zip(references).toMap - val patchedWindowExpression = windowExpression.map(_.transform(unboundToRefMap)) - UnsafeProjection.create( - child.output ++ patchedWindowExpression, - child.output) - } - - protected override def doExecute(): RDD[InternalRow] = { - // Unwrap the expressions and factories from the map. - val expressions = windowFrameExpressionFactoryPairs.flatMap(_._1) - val factories = windowFrameExpressionFactoryPairs.map(_._2).toArray - - // Start processing. - child.execute().mapPartitions { stream => - new Iterator[InternalRow] { - - // Get all relevant projections. - val result = createResultProjection(expressions) - val grouping = UnsafeProjection.create(partitionSpec, child.output) - - // Manage the stream and the grouping. - var nextRow: UnsafeRow = null - var nextGroup: UnsafeRow = null - var nextRowAvailable: Boolean = false - private[this] def fetchNextRow() { - nextRowAvailable = stream.hasNext - if (nextRowAvailable) { - nextRow = stream.next().asInstanceOf[UnsafeRow] - nextGroup = grouping(nextRow) - } else { - nextRow = null - nextGroup = null - } - } - fetchNextRow() - - // Manage the current partition. - val rows = ArrayBuffer.empty[UnsafeRow] - val inputFields = child.output.length - var sorter: UnsafeExternalSorter = null - var rowBuffer: RowBuffer = null - val windowFunctionResult = new SpecificMutableRow(expressions.map(_.dataType)) - val frames = factories.map(_(windowFunctionResult)) - val numFrames = frames.length - private[this] def fetchNextPartition() { - // Collect all the rows in the current partition. - // Before we start to fetch new input rows, make a copy of nextGroup. - val currentGroup = nextGroup.copy() - - // clear last partition - if (sorter != null) { - // the last sorter of this task will be cleaned up via task completion listener - sorter.cleanupResources() - sorter = null - } else { - rows.clear() - } - - while (nextRowAvailable && nextGroup == currentGroup) { - if (sorter == null) { - rows += nextRow.copy() - - if (rows.length >= 4096) { - // We will not sort the rows, so prefixComparator and recordComparator are null. - sorter = UnsafeExternalSorter.create( - TaskContext.get().taskMemoryManager(), - SparkEnv.get.blockManager, - SparkEnv.get.serializerManager, - TaskContext.get(), - null, - null, - 1024, - SparkEnv.get.memoryManager.pageSizeBytes, - SparkEnv.get.conf.getLong("spark.shuffle.spill.numElementsForceSpillThreshold", - UnsafeExternalSorter.DEFAULT_NUM_ELEMENTS_FOR_SPILL_THRESHOLD), - false) - rows.foreach { r => - sorter.insertRecord(r.getBaseObject, r.getBaseOffset, r.getSizeInBytes, 0, false) - } - rows.clear() - } - } else { - sorter.insertRecord(nextRow.getBaseObject, nextRow.getBaseOffset, - nextRow.getSizeInBytes, 0, false) - } - fetchNextRow() - } - if (sorter != null) { - rowBuffer = new ExternalRowBuffer(sorter, inputFields) - } else { - rowBuffer = new ArrayRowBuffer(rows) - } - - // Setup the frames. - var i = 0 - while (i < numFrames) { - frames(i).prepare(rowBuffer.copy()) - i += 1 - } - - // Setup iteration - rowIndex = 0 - rowsSize = rowBuffer.size() - } - - // Iteration - var rowIndex = 0 - var rowsSize = 0L - - override final def hasNext: Boolean = rowIndex < rowsSize || nextRowAvailable - - val join = new JoinedRow - override final def next(): InternalRow = { - // Load the next partition if we need to. - if (rowIndex >= rowsSize && nextRowAvailable) { - fetchNextPartition() - } - - if (rowIndex < rowsSize) { - // Get the results for the window frames. - var i = 0 - val current = rowBuffer.next() - while (i < numFrames) { - frames(i).write(rowIndex, current) - i += 1 - } - - // 'Merge' the input row with the window function result - join(current, windowFunctionResult) - rowIndex += 1 - - // Return the projection. - result(join) - } else throw new NoSuchElementException - } - } - } - } -} - -/** - * Function for comparing boundary values. - */ -private[execution] abstract class BoundOrdering { - def compare(inputRow: InternalRow, inputIndex: Int, outputRow: InternalRow, outputIndex: Int): Int -} - -/** - * Compare the input index to the bound of the output index. - */ -private[execution] final case class RowBoundOrdering(offset: Int) extends BoundOrdering { - override def compare( - inputRow: InternalRow, - inputIndex: Int, - outputRow: InternalRow, - outputIndex: Int): Int = - inputIndex - (outputIndex + offset) -} - -/** - * Compare the value of the input index to the value bound of the output index. - */ -private[execution] final case class RangeBoundOrdering( - ordering: Ordering[InternalRow], - current: Projection, - bound: Projection) extends BoundOrdering { - override def compare( - inputRow: InternalRow, - inputIndex: Int, - outputRow: InternalRow, - outputIndex: Int): Int = - ordering.compare(current(inputRow), bound(outputRow)) -} - -/** - * The interface of row buffer for a partition - */ -private[execution] abstract class RowBuffer { - - /** Number of rows. */ - def size(): Int - - /** Return next row in the buffer, null if no more left. */ - def next(): InternalRow - - /** Skip the next `n` rows. */ - def skip(n: Int): Unit - - /** Return a new RowBuffer that has the same rows. */ - def copy(): RowBuffer -} - -/** - * A row buffer based on ArrayBuffer (the number of rows is limited) - */ -private[execution] class ArrayRowBuffer(buffer: ArrayBuffer[UnsafeRow]) extends RowBuffer { - - private[this] var cursor: Int = -1 - - /** Number of rows. */ - def size(): Int = buffer.length - - /** Return next row in the buffer, null if no more left. */ - def next(): InternalRow = { - cursor += 1 - if (cursor < buffer.length) { - buffer(cursor) - } else { - null - } - } - - /** Skip the next `n` rows. */ - def skip(n: Int): Unit = { - cursor += n - } - - /** Return a new RowBuffer that has the same rows. */ - def copy(): RowBuffer = { - new ArrayRowBuffer(buffer) - } -} - -/** - * An external buffer of rows based on UnsafeExternalSorter - */ -private[execution] class ExternalRowBuffer(sorter: UnsafeExternalSorter, numFields: Int) - extends RowBuffer { - - private[this] val iter: UnsafeSorterIterator = sorter.getIterator - - private[this] val currentRow = new UnsafeRow(numFields) - - /** Number of rows. */ - def size(): Int = iter.getNumRecords() - - /** Return next row in the buffer, null if no more left. */ - def next(): InternalRow = { - if (iter.hasNext) { - iter.loadNext() - currentRow.pointTo(iter.getBaseObject, iter.getBaseOffset, iter.getRecordLength) - currentRow - } else { - null - } - } - - /** Skip the next `n` rows. */ - def skip(n: Int): Unit = { - var i = 0 - while (i < n && iter.hasNext) { - iter.loadNext() - i += 1 - } - } - - /** Return a new RowBuffer that has the same rows. */ - def copy(): RowBuffer = { - new ExternalRowBuffer(sorter, numFields) - } -} - -/** - * A window function calculates the results of a number of window functions for a window frame. - * Before use a frame must be prepared by passing it all the rows in the current partition. After - * preparation the update method can be called to fill the output rows. - */ -private[execution] abstract class WindowFunctionFrame { - /** - * Prepare the frame for calculating the results for a partition. - * - * @param rows to calculate the frame results for. - */ - def prepare(rows: RowBuffer): Unit - - /** - * Write the current results to the target row. - */ - def write(index: Int, current: InternalRow): Unit -} - -/** - * The offset window frame calculates frames containing LEAD/LAG statements. - * - * @param target to write results to. - * @param ordinal the ordinal is the starting offset at which the results of the window frame get - * written into the (shared) target row. The result of the frame expression with - * index 'i' will be written to the 'ordinal' + 'i' position in the target row. - * @param expressions to shift a number of rows. - * @param inputSchema required for creating a projection. - * @param newMutableProjection function used to create the projection. - * @param offset by which rows get moved within a partition. - */ -private[execution] final class OffsetWindowFunctionFrame( - target: MutableRow, - ordinal: Int, - expressions: Array[OffsetWindowFunction], - inputSchema: Seq[Attribute], - newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection, - offset: Int) extends WindowFunctionFrame { - - /** Rows of the partition currently being processed. */ - private[this] var input: RowBuffer = null - - /** Index of the input row currently used for output. */ - private[this] var inputIndex = 0 - - /** - * Create the projection used when the offset row exists. - * Please note that this project always respect null input values (like PostgreSQL). - */ - private[this] val projection = { - // Collect the expressions and bind them. - val inputAttrs = inputSchema.map(_.withNullability(true)) - val boundExpressions = Seq.fill(ordinal)(NoOp) ++ expressions.toSeq.map { e => - BindReferences.bindReference(e.input, inputAttrs) - } - - // Create the projection. - newMutableProjection(boundExpressions, Nil).target(target) - } - - /** Create the projection used when the offset row DOES NOT exists. */ - private[this] val fillDefaultValue = { - // Collect the expressions and bind them. - val inputAttrs = inputSchema.map(_.withNullability(true)) - val boundExpressions = Seq.fill(ordinal)(NoOp) ++ expressions.toSeq.map { e => - if (e.default == null || e.default.foldable && e.default.eval() == null) { - // The default value is null. - Literal.create(null, e.dataType) - } else { - // The default value is an expression. - BindReferences.bindReference(e.default, inputAttrs) - } - } - - // Create the projection. - newMutableProjection(boundExpressions, Nil).target(target) - } - - override def prepare(rows: RowBuffer): Unit = { - input = rows - // drain the first few rows if offset is larger than zero - inputIndex = 0 - while (inputIndex < offset) { - input.next() - inputIndex += 1 - } - inputIndex = offset - } - - override def write(index: Int, current: InternalRow): Unit = { - if (inputIndex >= 0 && inputIndex < input.size) { - val r = input.next() - projection(r) - } else { - // Use default values since the offset row does not exist. - fillDefaultValue(current) - } - inputIndex += 1 - } -} - -/** - * The sliding window frame calculates frames with the following SQL form: - * ... BETWEEN 1 PRECEDING AND 1 FOLLOWING - * - * @param target to write results to. - * @param processor to calculate the row values with. - * @param lbound comparator used to identify the lower bound of an output row. - * @param ubound comparator used to identify the upper bound of an output row. - */ -private[execution] final class SlidingWindowFunctionFrame( - target: MutableRow, - processor: AggregateProcessor, - lbound: BoundOrdering, - ubound: BoundOrdering) extends WindowFunctionFrame { - - /** Rows of the partition currently being processed. */ - private[this] var input: RowBuffer = null - - /** The next row from `input`. */ - private[this] var nextRow: InternalRow = null - - /** The rows within current sliding window. */ - private[this] val buffer = new util.ArrayDeque[InternalRow]() - - /** - * Index of the first input row with a value greater than the upper bound of the current - * output row. - */ - private[this] var inputHighIndex = 0 - - /** - * Index of the first input row with a value equal to or greater than the lower bound of the - * current output row. - */ - private[this] var inputLowIndex = 0 - - /** Prepare the frame for calculating a new partition. Reset all variables. */ - override def prepare(rows: RowBuffer): Unit = { - input = rows - nextRow = rows.next() - inputHighIndex = 0 - inputLowIndex = 0 - buffer.clear() - } - - /** Write the frame columns for the current row to the given target row. */ - override def write(index: Int, current: InternalRow): Unit = { - var bufferUpdated = index == 0 - - // Add all rows to the buffer for which the input row value is equal to or less than - // the output row upper bound. - while (nextRow != null && ubound.compare(nextRow, inputHighIndex, current, index) <= 0) { - buffer.add(nextRow.copy()) - nextRow = input.next() - inputHighIndex += 1 - bufferUpdated = true - } - - // Drop all rows from the buffer for which the input row value is smaller than - // the output row lower bound. - while (!buffer.isEmpty && lbound.compare(buffer.peek(), inputLowIndex, current, index) < 0) { - buffer.remove() - inputLowIndex += 1 - bufferUpdated = true - } - - // Only recalculate and update when the buffer changes. - if (bufferUpdated) { - processor.initialize(input.size) - val iter = buffer.iterator() - while (iter.hasNext) { - processor.update(iter.next()) - } - processor.evaluate(target) - } - } -} - -/** - * The unbounded window frame calculates frames with the following SQL forms: - * ... (No Frame Definition) - * ... BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING - * - * Its results are the same for each and every row in the partition. This class can be seen as a - * special case of a sliding window, but is optimized for the unbound case. - * - * @param target to write results to. - * @param processor to calculate the row values with. - */ -private[execution] final class UnboundedWindowFunctionFrame( - target: MutableRow, - processor: AggregateProcessor) extends WindowFunctionFrame { - - /** Prepare the frame for calculating a new partition. Process all rows eagerly. */ - override def prepare(rows: RowBuffer): Unit = { - val size = rows.size() - processor.initialize(size) - var i = 0 - while (i < size) { - processor.update(rows.next()) - i += 1 - } - } - - /** Write the frame columns for the current row to the given target row. */ - override def write(index: Int, current: InternalRow): Unit = { - // Unfortunately we cannot assume that evaluation is deterministic. So we need to re-evaluate - // for each row. - processor.evaluate(target) - } -} - -/** - * The UnboundPreceding window frame calculates frames with the following SQL form: - * ... BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW - * - * There is only an upper bound. Very common use cases are for instance running sums or counts - * (row_number). Technically this is a special case of a sliding window. However a sliding window - * has to maintain a buffer, and it must do a full evaluation everytime the buffer changes. This - * is not the case when there is no lower bound, given the additive nature of most aggregates - * streaming updates and partial evaluation suffice and no buffering is needed. - * - * @param target to write results to. - * @param processor to calculate the row values with. - * @param ubound comparator used to identify the upper bound of an output row. - */ -private[execution] final class UnboundedPrecedingWindowFunctionFrame( - target: MutableRow, - processor: AggregateProcessor, - ubound: BoundOrdering) extends WindowFunctionFrame { - - /** Rows of the partition currently being processed. */ - private[this] var input: RowBuffer = null - - /** The next row from `input`. */ - private[this] var nextRow: InternalRow = null - - /** - * Index of the first input row with a value greater than the upper bound of the current - * output row. - */ - private[this] var inputIndex = 0 - - /** Prepare the frame for calculating a new partition. */ - override def prepare(rows: RowBuffer): Unit = { - input = rows - nextRow = rows.next() - inputIndex = 0 - processor.initialize(input.size) - } - - /** Write the frame columns for the current row to the given target row. */ - override def write(index: Int, current: InternalRow): Unit = { - var bufferUpdated = index == 0 - - // Add all rows to the aggregates for which the input row value is equal to or less than - // the output row upper bound. - while (nextRow != null && ubound.compare(nextRow, inputIndex, current, index) <= 0) { - processor.update(nextRow) - nextRow = input.next() - inputIndex += 1 - bufferUpdated = true - } - - // Only recalculate and update when the buffer changes. - if (bufferUpdated) { - processor.evaluate(target) - } - } -} - -/** - * The UnboundFollowing window frame calculates frames with the following SQL form: - * ... BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING - * - * There is only an upper bound. This is a slightly modified version of the sliding window. The - * sliding window operator has to check if both upper and the lower bound change when a new row - * gets processed, where as the unbounded following only has to check the lower bound. - * - * This is a very expensive operator to use, O(n * (n - 1) /2), because we need to maintain a - * buffer and must do full recalculation after each row. Reverse iteration would be possible, if - * the commutativity of the used window functions can be guaranteed. - * - * @param target to write results to. - * @param processor to calculate the row values with. - * @param lbound comparator used to identify the lower bound of an output row. - */ -private[execution] final class UnboundedFollowingWindowFunctionFrame( - target: MutableRow, - processor: AggregateProcessor, - lbound: BoundOrdering) extends WindowFunctionFrame { - - /** Rows of the partition currently being processed. */ - private[this] var input: RowBuffer = null - - /** - * Index of the first input row with a value equal to or greater than the lower bound of the - * current output row. - */ - private[this] var inputIndex = 0 - - /** Prepare the frame for calculating a new partition. */ - override def prepare(rows: RowBuffer): Unit = { - input = rows - inputIndex = 0 - } - - /** Write the frame columns for the current row to the given target row. */ - override def write(index: Int, current: InternalRow): Unit = { - var bufferUpdated = index == 0 - - // Duplicate the input to have a new iterator - val tmp = input.copy() - - // Drop all rows from the buffer for which the input row value is smaller than - // the output row lower bound. - tmp.skip(inputIndex) - var nextRow = tmp.next() - while (nextRow != null && lbound.compare(nextRow, inputIndex, current, index) < 0) { - nextRow = tmp.next() - inputIndex += 1 - bufferUpdated = true - } - - // Only recalculate and update when the buffer changes. - if (bufferUpdated) { - processor.initialize(input.size) - while (nextRow != null) { - processor.update(nextRow) - nextRow = tmp.next() - } - processor.evaluate(target) - } - } -} - -/** - * This class prepares and manages the processing of a number of [[AggregateFunction]]s within a - * single frame. The [[WindowFunctionFrame]] takes care of processing the frame in the correct way, - * this reduces the processing of a [[AggregateWindowFunction]] to processing the underlying - * [[AggregateFunction]]. All [[AggregateFunction]]s are processed in [[Complete]] mode. - * - * [[SizeBasedWindowFunction]]s are initialized in a slightly different way. These functions - * require the size of the partition processed, this value is exposed to them when the processor is - * constructed. - * - * Processing of distinct aggregates is currently not supported. - * - * The implementation is split into an object which takes care of construction, and a the actual - * processor class. - */ -private[execution] object AggregateProcessor { - def apply( - functions: Array[Expression], - ordinal: Int, - inputAttributes: Seq[Attribute], - newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection): - AggregateProcessor = { - val aggBufferAttributes = mutable.Buffer.empty[AttributeReference] - val initialValues = mutable.Buffer.empty[Expression] - val updateExpressions = mutable.Buffer.empty[Expression] - val evaluateExpressions = mutable.Buffer.fill[Expression](ordinal)(NoOp) - val imperatives = mutable.Buffer.empty[ImperativeAggregate] - - // SPARK-14244: `SizeBasedWindowFunction`s are firstly created on driver side and then - // serialized to executor side. These functions all reference a global singleton window - // partition size attribute reference, i.e., `SizeBasedWindowFunction.n`. Here we must collect - // the singleton instance created on driver side instead of using executor side - // `SizeBasedWindowFunction.n` to avoid binding failure caused by mismatching expression ID. - val partitionSize: Option[AttributeReference] = { - val aggs = functions.flatMap(_.collectFirst { case f: SizeBasedWindowFunction => f }) - aggs.headOption.map(_.n) - } - - // Check if there are any SizeBasedWindowFunctions. If there are, we add the partition size to - // the aggregation buffer. Note that the ordinal of the partition size value will always be 0. - partitionSize.foreach { n => - aggBufferAttributes += n - initialValues += NoOp - updateExpressions += NoOp - } - - // Add an AggregateFunction to the AggregateProcessor. - functions.foreach { - case agg: DeclarativeAggregate => - aggBufferAttributes ++= agg.aggBufferAttributes - initialValues ++= agg.initialValues - updateExpressions ++= agg.updateExpressions - evaluateExpressions += agg.evaluateExpression - case agg: ImperativeAggregate => - val offset = aggBufferAttributes.size - val imperative = BindReferences.bindReference(agg - .withNewInputAggBufferOffset(offset) - .withNewMutableAggBufferOffset(offset), - inputAttributes) - imperatives += imperative - aggBufferAttributes ++= imperative.aggBufferAttributes - val noOps = Seq.fill(imperative.aggBufferAttributes.size)(NoOp) - initialValues ++= noOps - updateExpressions ++= noOps - evaluateExpressions += imperative - case other => - sys.error(s"Unsupported Aggregate Function: $other") - } - - // Create the projections. - val initialProjection = newMutableProjection( - initialValues, - partitionSize.toSeq) - val updateProjection = newMutableProjection( - updateExpressions, - aggBufferAttributes ++ inputAttributes) - val evaluateProjection = newMutableProjection( - evaluateExpressions, - aggBufferAttributes) - - // Create the processor - new AggregateProcessor( - aggBufferAttributes.toArray, - initialProjection, - updateProjection, - evaluateProjection, - imperatives.toArray, - partitionSize.isDefined) - } -} - -/** - * This class manages the processing of a number of aggregate functions. See the documentation of - * the object for more information. - */ -private[execution] final class AggregateProcessor( - private[this] val bufferSchema: Array[AttributeReference], - private[this] val initialProjection: MutableProjection, - private[this] val updateProjection: MutableProjection, - private[this] val evaluateProjection: MutableProjection, - private[this] val imperatives: Array[ImperativeAggregate], - private[this] val trackPartitionSize: Boolean) { - - private[this] val join = new JoinedRow - private[this] val numImperatives = imperatives.length - private[this] val buffer = new SpecificMutableRow(bufferSchema.toSeq.map(_.dataType)) - initialProjection.target(buffer) - updateProjection.target(buffer) - - /** Create the initial state. */ - def initialize(size: Int): Unit = { - // Some initialization expressions are dependent on the partition size so we have to - // initialize the size before initializing all other fields, and we have to pass the buffer to - // the initialization projection. - if (trackPartitionSize) { - buffer.setInt(0, size) - } - initialProjection(buffer) - var i = 0 - while (i < numImperatives) { - imperatives(i).initialize(buffer) - i += 1 - } - } - - /** Update the buffer. */ - def update(input: InternalRow): Unit = { - updateProjection(join(buffer, input)) - var i = 0 - while (i < numImperatives) { - imperatives(i).update(buffer, input) - i += 1 - } - } - - /** Evaluate buffer. */ - def evaluate(target: MutableRow): Unit = - evaluateProjection.target(target)(buffer) -} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/window/AggregateProcessor.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/AggregateProcessor.scala new file mode 100644 index 0000000000000000000000000000000000000000..d3a46d020dbbf1a3b8a49a60d42bf26613ae970a --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/AggregateProcessor.scala @@ -0,0 +1,159 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.window + +import scala.collection.mutable + +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.expressions.aggregate._ + + +/** + * This class prepares and manages the processing of a number of [[AggregateFunction]]s within a + * single frame. The [[WindowFunctionFrame]] takes care of processing the frame in the correct way, + * this reduces the processing of a [[AggregateWindowFunction]] to processing the underlying + * [[AggregateFunction]]. All [[AggregateFunction]]s are processed in [[Complete]] mode. + * + * [[SizeBasedWindowFunction]]s are initialized in a slightly different way. These functions + * require the size of the partition processed, this value is exposed to them when the processor is + * constructed. + * + * Processing of distinct aggregates is currently not supported. + * + * The implementation is split into an object which takes care of construction, and a the actual + * processor class. + */ +private[window] object AggregateProcessor { + def apply( + functions: Array[Expression], + ordinal: Int, + inputAttributes: Seq[Attribute], + newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection) + : AggregateProcessor = { + val aggBufferAttributes = mutable.Buffer.empty[AttributeReference] + val initialValues = mutable.Buffer.empty[Expression] + val updateExpressions = mutable.Buffer.empty[Expression] + val evaluateExpressions = mutable.Buffer.fill[Expression](ordinal)(NoOp) + val imperatives = mutable.Buffer.empty[ImperativeAggregate] + + // SPARK-14244: `SizeBasedWindowFunction`s are firstly created on driver side and then + // serialized to executor side. These functions all reference a global singleton window + // partition size attribute reference, i.e., `SizeBasedWindowFunction.n`. Here we must collect + // the singleton instance created on driver side instead of using executor side + // `SizeBasedWindowFunction.n` to avoid binding failure caused by mismatching expression ID. + val partitionSize: Option[AttributeReference] = { + val aggs = functions.flatMap(_.collectFirst { case f: SizeBasedWindowFunction => f }) + aggs.headOption.map(_.n) + } + + // Check if there are any SizeBasedWindowFunctions. If there are, we add the partition size to + // the aggregation buffer. Note that the ordinal of the partition size value will always be 0. + partitionSize.foreach { n => + aggBufferAttributes += n + initialValues += NoOp + updateExpressions += NoOp + } + + // Add an AggregateFunction to the AggregateProcessor. + functions.foreach { + case agg: DeclarativeAggregate => + aggBufferAttributes ++= agg.aggBufferAttributes + initialValues ++= agg.initialValues + updateExpressions ++= agg.updateExpressions + evaluateExpressions += agg.evaluateExpression + case agg: ImperativeAggregate => + val offset = aggBufferAttributes.size + val imperative = BindReferences.bindReference(agg + .withNewInputAggBufferOffset(offset) + .withNewMutableAggBufferOffset(offset), + inputAttributes) + imperatives += imperative + aggBufferAttributes ++= imperative.aggBufferAttributes + val noOps = Seq.fill(imperative.aggBufferAttributes.size)(NoOp) + initialValues ++= noOps + updateExpressions ++= noOps + evaluateExpressions += imperative + case other => + sys.error(s"Unsupported Aggregate Function: $other") + } + + // Create the projections. + val initialProj = newMutableProjection(initialValues, partitionSize.toSeq) + val updateProj = newMutableProjection(updateExpressions, aggBufferAttributes ++ inputAttributes) + val evalProj = newMutableProjection(evaluateExpressions, aggBufferAttributes) + + // Create the processor + new AggregateProcessor( + aggBufferAttributes.toArray, + initialProj, + updateProj, + evalProj, + imperatives.toArray, + partitionSize.isDefined) + } +} + +/** + * This class manages the processing of a number of aggregate functions. See the documentation of + * the object for more information. + */ +private[window] final class AggregateProcessor( + private[this] val bufferSchema: Array[AttributeReference], + private[this] val initialProjection: MutableProjection, + private[this] val updateProjection: MutableProjection, + private[this] val evaluateProjection: MutableProjection, + private[this] val imperatives: Array[ImperativeAggregate], + private[this] val trackPartitionSize: Boolean) { + + private[this] val join = new JoinedRow + private[this] val numImperatives = imperatives.length + private[this] val buffer = new SpecificMutableRow(bufferSchema.toSeq.map(_.dataType)) + initialProjection.target(buffer) + updateProjection.target(buffer) + + /** Create the initial state. */ + def initialize(size: Int): Unit = { + // Some initialization expressions are dependent on the partition size so we have to + // initialize the size before initializing all other fields, and we have to pass the buffer to + // the initialization projection. + if (trackPartitionSize) { + buffer.setInt(0, size) + } + initialProjection(buffer) + var i = 0 + while (i < numImperatives) { + imperatives(i).initialize(buffer) + i += 1 + } + } + + /** Update the buffer. */ + def update(input: InternalRow): Unit = { + updateProjection(join(buffer, input)) + var i = 0 + while (i < numImperatives) { + imperatives(i).update(buffer, input) + i += 1 + } + } + + /** Evaluate buffer. */ + def evaluate(target: MutableRow): Unit = + evaluateProjection.target(target)(buffer) +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/window/BoundOrdering.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/BoundOrdering.scala new file mode 100644 index 0000000000000000000000000000000000000000..d6a801954c1ac2a5283870d3b6e908cb9093888b --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/BoundOrdering.scala @@ -0,0 +1,58 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.window + +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions.Projection + + +/** + * Function for comparing boundary values. + */ +private[window] abstract class BoundOrdering { + def compare(inputRow: InternalRow, inputIndex: Int, outputRow: InternalRow, outputIndex: Int): Int +} + +/** + * Compare the input index to the bound of the output index. + */ +private[window] final case class RowBoundOrdering(offset: Int) extends BoundOrdering { + override def compare( + inputRow: InternalRow, + inputIndex: Int, + outputRow: InternalRow, + outputIndex: Int): Int = + inputIndex - (outputIndex + offset) +} + +/** + * Compare the value of the input index to the value bound of the output index. + */ +private[window] final case class RangeBoundOrdering( + ordering: Ordering[InternalRow], + current: Projection, + bound: Projection) + extends BoundOrdering { + + override def compare( + inputRow: InternalRow, + inputIndex: Int, + outputRow: InternalRow, + outputIndex: Int): Int = + ordering.compare(current(inputRow), bound(outputRow)) +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/window/RowBuffer.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/RowBuffer.scala new file mode 100644 index 0000000000000000000000000000000000000000..ee36c8425151979b874c9427c1c584082c9da7e2 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/RowBuffer.scala @@ -0,0 +1,115 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.window + +import scala.collection.mutable.ArrayBuffer + +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions.UnsafeRow +import org.apache.spark.util.collection.unsafe.sort.{UnsafeExternalSorter, UnsafeSorterIterator} + + +/** + * The interface of row buffer for a partition. In absence of a buffer pool (with locking), the + * row buffer is used to materialize a partition of rows since we need to repeatedly scan these + * rows in window function processing. + */ +private[window] abstract class RowBuffer { + + /** Number of rows. */ + def size: Int + + /** Return next row in the buffer, null if no more left. */ + def next(): InternalRow + + /** Skip the next `n` rows. */ + def skip(n: Int): Unit + + /** Return a new RowBuffer that has the same rows. */ + def copy(): RowBuffer +} + +/** + * A row buffer based on ArrayBuffer (the number of rows is limited). + */ +private[window] class ArrayRowBuffer(buffer: ArrayBuffer[UnsafeRow]) extends RowBuffer { + + private[this] var cursor: Int = -1 + + /** Number of rows. */ + override def size: Int = buffer.length + + /** Return next row in the buffer, null if no more left. */ + override def next(): InternalRow = { + cursor += 1 + if (cursor < buffer.length) { + buffer(cursor) + } else { + null + } + } + + /** Skip the next `n` rows. */ + override def skip(n: Int): Unit = { + cursor += n + } + + /** Return a new RowBuffer that has the same rows. */ + override def copy(): RowBuffer = { + new ArrayRowBuffer(buffer) + } +} + +/** + * An external buffer of rows based on UnsafeExternalSorter. + */ +private[window] class ExternalRowBuffer(sorter: UnsafeExternalSorter, numFields: Int) + extends RowBuffer { + + private[this] val iter: UnsafeSorterIterator = sorter.getIterator + + private[this] val currentRow = new UnsafeRow(numFields) + + /** Number of rows. */ + override def size: Int = iter.getNumRecords() + + /** Return next row in the buffer, null if no more left. */ + override def next(): InternalRow = { + if (iter.hasNext) { + iter.loadNext() + currentRow.pointTo(iter.getBaseObject, iter.getBaseOffset, iter.getRecordLength) + currentRow + } else { + null + } + } + + /** Skip the next `n` rows. */ + override def skip(n: Int): Unit = { + var i = 0 + while (i < n && iter.hasNext) { + iter.loadNext() + i += 1 + } + } + + /** Return a new RowBuffer that has the same rows. */ + override def copy(): RowBuffer = { + new ExternalRowBuffer(sorter, numFields) + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowExec.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowExec.scala new file mode 100644 index 0000000000000000000000000000000000000000..7a6a30f120386ec6ecd1260ce773eeae92947fc3 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowExec.scala @@ -0,0 +1,412 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.window + +import scala.collection.mutable +import scala.collection.mutable.ArrayBuffer + +import org.apache.spark.{SparkEnv, TaskContext} +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.expressions.aggregate._ +import org.apache.spark.sql.catalyst.plans.physical._ +import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode} +import org.apache.spark.sql.types.IntegerType +import org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter + +/** + * This class calculates and outputs (windowed) aggregates over the rows in a single (sorted) + * partition. The aggregates are calculated for each row in the group. Special processing + * instructions, frames, are used to calculate these aggregates. Frames are processed in the order + * specified in the window specification (the ORDER BY ... clause). There are four different frame + * types: + * - Entire partition: The frame is the entire partition, i.e. + * UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING. For this case, window function will take all + * rows as inputs and be evaluated once. + * - Growing frame: We only add new rows into the frame, i.e. UNBOUNDED PRECEDING AND .... + * Every time we move to a new row to process, we add some rows to the frame. We do not remove + * rows from this frame. + * - Shrinking frame: We only remove rows from the frame, i.e. ... AND UNBOUNDED FOLLOWING. + * Every time we move to a new row to process, we remove some rows from the frame. We do not add + * rows to this frame. + * - Moving frame: Every time we move to a new row to process, we remove some rows from the frame + * and we add some rows to the frame. Examples are: + * 1 PRECEDING AND CURRENT ROW and 1 FOLLOWING AND 2 FOLLOWING. + * - Offset frame: The frame consist of one row, which is an offset number of rows away from the + * current row. Only [[OffsetWindowFunction]]s can be processed in an offset frame. + * + * Different frame boundaries can be used in Growing, Shrinking and Moving frames. A frame + * boundary can be either Row or Range based: + * - Row Based: A row based boundary is based on the position of the row within the partition. + * An offset indicates the number of rows above or below the current row, the frame for the + * current row starts or ends. For instance, given a row based sliding frame with a lower bound + * offset of -1 and a upper bound offset of +2. The frame for row with index 5 would range from + * index 4 to index 6. + * - Range based: A range based boundary is based on the actual value of the ORDER BY + * expression(s). An offset is used to alter the value of the ORDER BY expression, for + * instance if the current order by expression has a value of 10 and the lower bound offset + * is -3, the resulting lower bound for the current row will be 10 - 3 = 7. This however puts a + * number of constraints on the ORDER BY expressions: there can be only one expression and this + * expression must have a numerical data type. An exception can be made when the offset is 0, + * because no value modification is needed, in this case multiple and non-numeric ORDER BY + * expression are allowed. + * + * This is quite an expensive operator because every row for a single group must be in the same + * partition and partitions must be sorted according to the grouping and sort order. The operator + * requires the planner to take care of the partitioning and sorting. + * + * The operator is semi-blocking. The window functions and aggregates are calculated one group at + * a time, the result will only be made available after the processing for the entire group has + * finished. The operator is able to process different frame configurations at the same time. This + * is done by delegating the actual frame processing (i.e. calculation of the window functions) to + * specialized classes, see [[WindowFunctionFrame]], which take care of their own frame type: + * Entire Partition, Sliding, Growing & Shrinking. Boundary evaluation is also delegated to a pair + * of specialized classes: [[RowBoundOrdering]] & [[RangeBoundOrdering]]. + */ +case class WindowExec( + windowExpression: Seq[NamedExpression], + partitionSpec: Seq[Expression], + orderSpec: Seq[SortOrder], + child: SparkPlan) + extends UnaryExecNode { + + override def output: Seq[Attribute] = + child.output ++ windowExpression.map(_.toAttribute) + + override def requiredChildDistribution: Seq[Distribution] = { + if (partitionSpec.isEmpty) { + // Only show warning when the number of bytes is larger than 100 MB? + logWarning("No Partition Defined for Window operation! Moving all data to a single " + + "partition, this can cause serious performance degradation.") + AllTuples :: Nil + } else ClusteredDistribution(partitionSpec) :: Nil + } + + override def requiredChildOrdering: Seq[Seq[SortOrder]] = + Seq(partitionSpec.map(SortOrder(_, Ascending)) ++ orderSpec) + + override def outputOrdering: Seq[SortOrder] = child.outputOrdering + + /** + * Create a bound ordering object for a given frame type and offset. A bound ordering object is + * used to determine which input row lies within the frame boundaries of an output row. + * + * This method uses Code Generation. It can only be used on the executor side. + * + * @param frameType to evaluate. This can either be Row or Range based. + * @param offset with respect to the row. + * @return a bound ordering object. + */ + private[this] def createBoundOrdering(frameType: FrameType, offset: Int): BoundOrdering = { + frameType match { + case RangeFrame => + val (exprs, current, bound) = if (offset == 0) { + // Use the entire order expression when the offset is 0. + val exprs = orderSpec.map(_.child) + val buildProjection = () => newMutableProjection(exprs, child.output) + (orderSpec, buildProjection(), buildProjection()) + } else if (orderSpec.size == 1) { + // Use only the first order expression when the offset is non-null. + val sortExpr = orderSpec.head + val expr = sortExpr.child + // Create the projection which returns the current 'value'. + val current = newMutableProjection(expr :: Nil, child.output) + // Flip the sign of the offset when processing the order is descending + val boundOffset = sortExpr.direction match { + case Descending => -offset + case Ascending => offset + } + // Create the projection which returns the current 'value' modified by adding the offset. + val boundExpr = Add(expr, Cast(Literal.create(boundOffset, IntegerType), expr.dataType)) + val bound = newMutableProjection(boundExpr :: Nil, child.output) + (sortExpr :: Nil, current, bound) + } else { + sys.error("Non-Zero range offsets are not supported for windows " + + "with multiple order expressions.") + } + // Construct the ordering. This is used to compare the result of current value projection + // to the result of bound value projection. This is done manually because we want to use + // Code Generation (if it is enabled). + val sortExprs = exprs.zipWithIndex.map { case (e, i) => + SortOrder(BoundReference(i, e.dataType, e.nullable), e.direction) + } + val ordering = newOrdering(sortExprs, Nil) + RangeBoundOrdering(ordering, current, bound) + case RowFrame => RowBoundOrdering(offset) + } + } + + /** + * Collection containing an entry for each window frame to process. Each entry contains a frames' + * WindowExpressions and factory function for the WindowFrameFunction. + */ + private[this] lazy val windowFrameExpressionFactoryPairs = { + type FrameKey = (String, FrameType, Option[Int], Option[Int]) + type ExpressionBuffer = mutable.Buffer[Expression] + val framedFunctions = mutable.Map.empty[FrameKey, (ExpressionBuffer, ExpressionBuffer)] + + // Add a function and its function to the map for a given frame. + def collect(tpe: String, fr: SpecifiedWindowFrame, e: Expression, fn: Expression): Unit = { + val key = (tpe, fr.frameType, FrameBoundary(fr.frameStart), FrameBoundary(fr.frameEnd)) + val (es, fns) = framedFunctions.getOrElseUpdate( + key, (ArrayBuffer.empty[Expression], ArrayBuffer.empty[Expression])) + es += e + fns += fn + } + + // Collect all valid window functions and group them by their frame. + windowExpression.foreach { x => + x.foreach { + case e @ WindowExpression(function, spec) => + val frame = spec.frameSpecification.asInstanceOf[SpecifiedWindowFrame] + function match { + case AggregateExpression(f, _, _, _) => collect("AGGREGATE", frame, e, f) + case f: AggregateWindowFunction => collect("AGGREGATE", frame, e, f) + case f: OffsetWindowFunction => collect("OFFSET", frame, e, f) + case f => sys.error(s"Unsupported window function: $f") + } + case _ => + } + } + + // Map the groups to a (unbound) expression and frame factory pair. + var numExpressions = 0 + framedFunctions.toSeq.map { + case (key, (expressions, functionSeq)) => + val ordinal = numExpressions + val functions = functionSeq.toArray + + // Construct an aggregate processor if we need one. + def processor = AggregateProcessor( + functions, + ordinal, + child.output, + (expressions, schema) => + newMutableProjection(expressions, schema, subexpressionEliminationEnabled)) + + // Create the factory + val factory = key match { + // Offset Frame + case ("OFFSET", RowFrame, Some(offset), Some(h)) if offset == h => + target: MutableRow => + new OffsetWindowFunctionFrame( + target, + ordinal, + // OFFSET frame functions are guaranteed be OffsetWindowFunctions. + functions.map(_.asInstanceOf[OffsetWindowFunction]), + child.output, + (expressions, schema) => + newMutableProjection(expressions, schema, subexpressionEliminationEnabled), + offset) + + // Growing Frame. + case ("AGGREGATE", frameType, None, Some(high)) => + target: MutableRow => { + new UnboundedPrecedingWindowFunctionFrame( + target, + processor, + createBoundOrdering(frameType, high)) + } + + // Shrinking Frame. + case ("AGGREGATE", frameType, Some(low), None) => + target: MutableRow => { + new UnboundedFollowingWindowFunctionFrame( + target, + processor, + createBoundOrdering(frameType, low)) + } + + // Moving Frame. + case ("AGGREGATE", frameType, Some(low), Some(high)) => + target: MutableRow => { + new SlidingWindowFunctionFrame( + target, + processor, + createBoundOrdering(frameType, low), + createBoundOrdering(frameType, high)) + } + + // Entire Partition Frame. + case ("AGGREGATE", frameType, None, None) => + target: MutableRow => { + new UnboundedWindowFunctionFrame(target, processor) + } + } + + // Keep track of the number of expressions. This is a side-effect in a map... + numExpressions += expressions.size + + // Create the Frame Expression - Factory pair. + (expressions, factory) + } + } + + /** + * Create the resulting projection. + * + * This method uses Code Generation. It can only be used on the executor side. + * + * @param expressions unbound ordered function expressions. + * @return the final resulting projection. + */ + private[this] def createResultProjection(expressions: Seq[Expression]): UnsafeProjection = { + val references = expressions.zipWithIndex.map{ case (e, i) => + // Results of window expressions will be on the right side of child's output + BoundReference(child.output.size + i, e.dataType, e.nullable) + } + val unboundToRefMap = expressions.zip(references).toMap + val patchedWindowExpression = windowExpression.map(_.transform(unboundToRefMap)) + UnsafeProjection.create( + child.output ++ patchedWindowExpression, + child.output) + } + + protected override def doExecute(): RDD[InternalRow] = { + // Unwrap the expressions and factories from the map. + val expressions = windowFrameExpressionFactoryPairs.flatMap(_._1) + val factories = windowFrameExpressionFactoryPairs.map(_._2).toArray + + // Start processing. + child.execute().mapPartitions { stream => + new Iterator[InternalRow] { + + // Get all relevant projections. + val result = createResultProjection(expressions) + val grouping = UnsafeProjection.create(partitionSpec, child.output) + + // Manage the stream and the grouping. + var nextRow: UnsafeRow = null + var nextGroup: UnsafeRow = null + var nextRowAvailable: Boolean = false + private[this] def fetchNextRow() { + nextRowAvailable = stream.hasNext + if (nextRowAvailable) { + nextRow = stream.next().asInstanceOf[UnsafeRow] + nextGroup = grouping(nextRow) + } else { + nextRow = null + nextGroup = null + } + } + fetchNextRow() + + // Manage the current partition. + val rows = ArrayBuffer.empty[UnsafeRow] + val inputFields = child.output.length + var sorter: UnsafeExternalSorter = null + var rowBuffer: RowBuffer = null + val windowFunctionResult = new SpecificMutableRow(expressions.map(_.dataType)) + val frames = factories.map(_(windowFunctionResult)) + val numFrames = frames.length + private[this] def fetchNextPartition() { + // Collect all the rows in the current partition. + // Before we start to fetch new input rows, make a copy of nextGroup. + val currentGroup = nextGroup.copy() + + // clear last partition + if (sorter != null) { + // the last sorter of this task will be cleaned up via task completion listener + sorter.cleanupResources() + sorter = null + } else { + rows.clear() + } + + while (nextRowAvailable && nextGroup == currentGroup) { + if (sorter == null) { + rows += nextRow.copy() + + if (rows.length >= 4096) { + // We will not sort the rows, so prefixComparator and recordComparator are null. + sorter = UnsafeExternalSorter.create( + TaskContext.get().taskMemoryManager(), + SparkEnv.get.blockManager, + SparkEnv.get.serializerManager, + TaskContext.get(), + null, + null, + 1024, + SparkEnv.get.memoryManager.pageSizeBytes, + SparkEnv.get.conf.getLong("spark.shuffle.spill.numElementsForceSpillThreshold", + UnsafeExternalSorter.DEFAULT_NUM_ELEMENTS_FOR_SPILL_THRESHOLD), + false) + rows.foreach { r => + sorter.insertRecord(r.getBaseObject, r.getBaseOffset, r.getSizeInBytes, 0, false) + } + rows.clear() + } + } else { + sorter.insertRecord(nextRow.getBaseObject, nextRow.getBaseOffset, + nextRow.getSizeInBytes, 0, false) + } + fetchNextRow() + } + if (sorter != null) { + rowBuffer = new ExternalRowBuffer(sorter, inputFields) + } else { + rowBuffer = new ArrayRowBuffer(rows) + } + + // Setup the frames. + var i = 0 + while (i < numFrames) { + frames(i).prepare(rowBuffer.copy()) + i += 1 + } + + // Setup iteration + rowIndex = 0 + rowsSize = rowBuffer.size + } + + // Iteration + var rowIndex = 0 + var rowsSize = 0L + + override final def hasNext: Boolean = rowIndex < rowsSize || nextRowAvailable + + val join = new JoinedRow + override final def next(): InternalRow = { + // Load the next partition if we need to. + if (rowIndex >= rowsSize && nextRowAvailable) { + fetchNextPartition() + } + + if (rowIndex < rowsSize) { + // Get the results for the window frames. + var i = 0 + val current = rowBuffer.next() + while (i < numFrames) { + frames(i).write(rowIndex, current) + i += 1 + } + + // 'Merge' the input row with the window function result + join(current, windowFunctionResult) + rowIndex += 1 + + // Return the projection. + result(join) + } else throw new NoSuchElementException + } + } + } + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowFunctionFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowFunctionFrame.scala new file mode 100644 index 0000000000000000000000000000000000000000..2ab9faab7a59b5008eae61dc5ef57a7849af63a0 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/window/WindowFunctionFrame.scala @@ -0,0 +1,367 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution.window + +import java.util + +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.expressions.aggregate.NoOp + + +/** + * A window function calculates the results of a number of window functions for a window frame. + * Before use a frame must be prepared by passing it all the rows in the current partition. After + * preparation the update method can be called to fill the output rows. + */ +private[window] abstract class WindowFunctionFrame { + /** + * Prepare the frame for calculating the results for a partition. + * + * @param rows to calculate the frame results for. + */ + def prepare(rows: RowBuffer): Unit + + /** + * Write the current results to the target row. + */ + def write(index: Int, current: InternalRow): Unit +} + +/** + * The offset window frame calculates frames containing LEAD/LAG statements. + * + * @param target to write results to. + * @param ordinal the ordinal is the starting offset at which the results of the window frame get + * written into the (shared) target row. The result of the frame expression with + * index 'i' will be written to the 'ordinal' + 'i' position in the target row. + * @param expressions to shift a number of rows. + * @param inputSchema required for creating a projection. + * @param newMutableProjection function used to create the projection. + * @param offset by which rows get moved within a partition. + */ +private[window] final class OffsetWindowFunctionFrame( + target: MutableRow, + ordinal: Int, + expressions: Array[OffsetWindowFunction], + inputSchema: Seq[Attribute], + newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection, + offset: Int) + extends WindowFunctionFrame { + + /** Rows of the partition currently being processed. */ + private[this] var input: RowBuffer = null + + /** Index of the input row currently used for output. */ + private[this] var inputIndex = 0 + + /** + * Create the projection used when the offset row exists. + * Please note that this project always respect null input values (like PostgreSQL). + */ + private[this] val projection = { + // Collect the expressions and bind them. + val inputAttrs = inputSchema.map(_.withNullability(true)) + val boundExpressions = Seq.fill(ordinal)(NoOp) ++ expressions.toSeq.map { e => + BindReferences.bindReference(e.input, inputAttrs) + } + + // Create the projection. + newMutableProjection(boundExpressions, Nil).target(target) + } + + /** Create the projection used when the offset row DOES NOT exists. */ + private[this] val fillDefaultValue = { + // Collect the expressions and bind them. + val inputAttrs = inputSchema.map(_.withNullability(true)) + val boundExpressions = Seq.fill(ordinal)(NoOp) ++ expressions.toSeq.map { e => + if (e.default == null || e.default.foldable && e.default.eval() == null) { + // The default value is null. + Literal.create(null, e.dataType) + } else { + // The default value is an expression. + BindReferences.bindReference(e.default, inputAttrs) + } + } + + // Create the projection. + newMutableProjection(boundExpressions, Nil).target(target) + } + + override def prepare(rows: RowBuffer): Unit = { + input = rows + // drain the first few rows if offset is larger than zero + inputIndex = 0 + while (inputIndex < offset) { + input.next() + inputIndex += 1 + } + inputIndex = offset + } + + override def write(index: Int, current: InternalRow): Unit = { + if (inputIndex >= 0 && inputIndex < input.size) { + val r = input.next() + projection(r) + } else { + // Use default values since the offset row does not exist. + fillDefaultValue(current) + } + inputIndex += 1 + } +} + +/** + * The sliding window frame calculates frames with the following SQL form: + * ... BETWEEN 1 PRECEDING AND 1 FOLLOWING + * + * @param target to write results to. + * @param processor to calculate the row values with. + * @param lbound comparator used to identify the lower bound of an output row. + * @param ubound comparator used to identify the upper bound of an output row. + */ +private[window] final class SlidingWindowFunctionFrame( + target: MutableRow, + processor: AggregateProcessor, + lbound: BoundOrdering, + ubound: BoundOrdering) + extends WindowFunctionFrame { + + /** Rows of the partition currently being processed. */ + private[this] var input: RowBuffer = null + + /** The next row from `input`. */ + private[this] var nextRow: InternalRow = null + + /** The rows within current sliding window. */ + private[this] val buffer = new util.ArrayDeque[InternalRow]() + + /** + * Index of the first input row with a value greater than the upper bound of the current + * output row. + */ + private[this] var inputHighIndex = 0 + + /** + * Index of the first input row with a value equal to or greater than the lower bound of the + * current output row. + */ + private[this] var inputLowIndex = 0 + + /** Prepare the frame for calculating a new partition. Reset all variables. */ + override def prepare(rows: RowBuffer): Unit = { + input = rows + nextRow = rows.next() + inputHighIndex = 0 + inputLowIndex = 0 + buffer.clear() + } + + /** Write the frame columns for the current row to the given target row. */ + override def write(index: Int, current: InternalRow): Unit = { + var bufferUpdated = index == 0 + + // Add all rows to the buffer for which the input row value is equal to or less than + // the output row upper bound. + while (nextRow != null && ubound.compare(nextRow, inputHighIndex, current, index) <= 0) { + buffer.add(nextRow.copy()) + nextRow = input.next() + inputHighIndex += 1 + bufferUpdated = true + } + + // Drop all rows from the buffer for which the input row value is smaller than + // the output row lower bound. + while (!buffer.isEmpty && lbound.compare(buffer.peek(), inputLowIndex, current, index) < 0) { + buffer.remove() + inputLowIndex += 1 + bufferUpdated = true + } + + // Only recalculate and update when the buffer changes. + if (bufferUpdated) { + processor.initialize(input.size) + val iter = buffer.iterator() + while (iter.hasNext) { + processor.update(iter.next()) + } + processor.evaluate(target) + } + } +} + +/** + * The unbounded window frame calculates frames with the following SQL forms: + * ... (No Frame Definition) + * ... BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING + * + * Its results are the same for each and every row in the partition. This class can be seen as a + * special case of a sliding window, but is optimized for the unbound case. + * + * @param target to write results to. + * @param processor to calculate the row values with. + */ +private[window] final class UnboundedWindowFunctionFrame( + target: MutableRow, + processor: AggregateProcessor) + extends WindowFunctionFrame { + + /** Prepare the frame for calculating a new partition. Process all rows eagerly. */ + override def prepare(rows: RowBuffer): Unit = { + val size = rows.size + processor.initialize(size) + var i = 0 + while (i < size) { + processor.update(rows.next()) + i += 1 + } + } + + /** Write the frame columns for the current row to the given target row. */ + override def write(index: Int, current: InternalRow): Unit = { + // Unfortunately we cannot assume that evaluation is deterministic. So we need to re-evaluate + // for each row. + processor.evaluate(target) + } +} + +/** + * The UnboundPreceding window frame calculates frames with the following SQL form: + * ... BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW + * + * There is only an upper bound. Very common use cases are for instance running sums or counts + * (row_number). Technically this is a special case of a sliding window. However a sliding window + * has to maintain a buffer, and it must do a full evaluation everytime the buffer changes. This + * is not the case when there is no lower bound, given the additive nature of most aggregates + * streaming updates and partial evaluation suffice and no buffering is needed. + * + * @param target to write results to. + * @param processor to calculate the row values with. + * @param ubound comparator used to identify the upper bound of an output row. + */ +private[window] final class UnboundedPrecedingWindowFunctionFrame( + target: MutableRow, + processor: AggregateProcessor, + ubound: BoundOrdering) + extends WindowFunctionFrame { + + /** Rows of the partition currently being processed. */ + private[this] var input: RowBuffer = null + + /** The next row from `input`. */ + private[this] var nextRow: InternalRow = null + + /** + * Index of the first input row with a value greater than the upper bound of the current + * output row. + */ + private[this] var inputIndex = 0 + + /** Prepare the frame for calculating a new partition. */ + override def prepare(rows: RowBuffer): Unit = { + input = rows + nextRow = rows.next() + inputIndex = 0 + processor.initialize(input.size) + } + + /** Write the frame columns for the current row to the given target row. */ + override def write(index: Int, current: InternalRow): Unit = { + var bufferUpdated = index == 0 + + // Add all rows to the aggregates for which the input row value is equal to or less than + // the output row upper bound. + while (nextRow != null && ubound.compare(nextRow, inputIndex, current, index) <= 0) { + processor.update(nextRow) + nextRow = input.next() + inputIndex += 1 + bufferUpdated = true + } + + // Only recalculate and update when the buffer changes. + if (bufferUpdated) { + processor.evaluate(target) + } + } +} + +/** + * The UnboundFollowing window frame calculates frames with the following SQL form: + * ... BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING + * + * There is only an upper bound. This is a slightly modified version of the sliding window. The + * sliding window operator has to check if both upper and the lower bound change when a new row + * gets processed, where as the unbounded following only has to check the lower bound. + * + * This is a very expensive operator to use, O(n * (n - 1) /2), because we need to maintain a + * buffer and must do full recalculation after each row. Reverse iteration would be possible, if + * the commutativity of the used window functions can be guaranteed. + * + * @param target to write results to. + * @param processor to calculate the row values with. + * @param lbound comparator used to identify the lower bound of an output row. + */ +private[window] final class UnboundedFollowingWindowFunctionFrame( + target: MutableRow, + processor: AggregateProcessor, + lbound: BoundOrdering) + extends WindowFunctionFrame { + + /** Rows of the partition currently being processed. */ + private[this] var input: RowBuffer = null + + /** + * Index of the first input row with a value equal to or greater than the lower bound of the + * current output row. + */ + private[this] var inputIndex = 0 + + /** Prepare the frame for calculating a new partition. */ + override def prepare(rows: RowBuffer): Unit = { + input = rows + inputIndex = 0 + } + + /** Write the frame columns for the current row to the given target row. */ + override def write(index: Int, current: InternalRow): Unit = { + var bufferUpdated = index == 0 + + // Duplicate the input to have a new iterator + val tmp = input.copy() + + // Drop all rows from the buffer for which the input row value is smaller than + // the output row lower bound. + tmp.skip(inputIndex) + var nextRow = tmp.next() + while (nextRow != null && lbound.compare(nextRow, inputIndex, current, index) < 0) { + nextRow = tmp.next() + inputIndex += 1 + bufferUpdated = true + } + + // Only recalculate and update when the buffer changes. + if (bufferUpdated) { + processor.initialize(input.size) + while (nextRow != null) { + processor.update(nextRow) + nextRow = tmp.next() + } + processor.evaluate(target) + } + } +}