From 5ad68ba5ce625c7005b540ca50ed001ca18de967 Mon Sep 17 00:00:00 2001 From: Lianhui Wang <lianhuiwang09@gmail.com> Date: Tue, 12 Jul 2016 18:52:15 +0200 Subject: [PATCH] [SPARK-15752][SQL] Optimize metadata only query that has an aggregate whose children are deterministic project or filter operators. ## What changes were proposed in this pull request? when query only use metadata (example: partition key), it can return results based on metadata without scanning files. Hive did it in HIVE-1003. ## How was this patch tested? add unit tests Author: Lianhui Wang <lianhuiwang09@gmail.com> Author: Wenchen Fan <wenchen@databricks.com> Author: Lianhui Wang <lianhuiwang@users.noreply.github.com> Closes #13494 from lianhuiwang/metadata-only. --- docs/sql-programming-guide.md | 12 ++ .../execution/OptimizeMetadataOnlyQuery.scala | 152 ++++++++++++++++++ .../spark/sql/execution/SparkOptimizer.scala | 1 + .../apache/spark/sql/internal/SQLConf.scala | 10 ++ .../org/apache/spark/sql/SQLQuerySuite.scala | 36 +++++ .../OptimizeMetadataOnlyQuerySuite.scala | 120 ++++++++++++++ .../sql/hive/execution/SQLQuerySuite.scala | 89 ++++++++++ 7 files changed, 420 insertions(+) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuery.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuerySuite.scala diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 448251cfdc..e838a13af7 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -1376,6 +1376,18 @@ Configuration of Parquet can be done using the `setConf` method on `SparkSession </p> </td> </tr> +<tr> + <td><code>spark.sql.optimizer.metadataOnly</code></td> + <td>true</td> + <td> + <p> + When true, enable the metadata-only query optimization that use the table's metadata to + produce the partition columns instead of table scans. It applies when all the columns scanned + are partition columns and the query has an aggregate operator that satisfies distinct + semantics. + </p> + </td> +</tr> </table> ## JSON Datasets diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuery.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuery.scala new file mode 100644 index 0000000000..1b7fedca84 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuery.scala @@ -0,0 +1,152 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution + +import org.apache.spark.sql.catalyst.InternalRow +import org.apache.spark.sql.catalyst.catalog.{CatalogRelation, SessionCatalog} +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.expressions.aggregate._ +import org.apache.spark.sql.catalyst.plans.logical._ +import org.apache.spark.sql.catalyst.rules.Rule +import org.apache.spark.sql.execution.datasources.{HadoopFsRelation, LogicalRelation} +import org.apache.spark.sql.internal.SQLConf + +/** + * This rule optimizes the execution of queries that can be answered by looking only at + * partition-level metadata. This applies when all the columns scanned are partition columns, and + * the query has an aggregate operator that satisfies the following conditions: + * 1. aggregate expression is partition columns. + * e.g. SELECT col FROM tbl GROUP BY col. + * 2. aggregate function on partition columns with DISTINCT. + * e.g. SELECT col1, count(DISTINCT col2) FROM tbl GROUP BY col1. + * 3. aggregate function on partition columns which have same result w or w/o DISTINCT keyword. + * e.g. SELECT col1, Max(col2) FROM tbl GROUP BY col1. + */ +case class OptimizeMetadataOnlyQuery( + catalog: SessionCatalog, + conf: SQLConf) extends Rule[LogicalPlan] { + + def apply(plan: LogicalPlan): LogicalPlan = { + if (!conf.optimizerMetadataOnly) { + return plan + } + + plan.transform { + case a @ Aggregate(_, aggExprs, child @ PartitionedRelation(partAttrs, relation)) => + // We only apply this optimization when only partitioned attributes are scanned. + if (a.references.subsetOf(partAttrs)) { + val aggFunctions = aggExprs.flatMap(_.collect { + case agg: AggregateExpression => agg + }) + val isAllDistinctAgg = aggFunctions.forall { agg => + agg.isDistinct || (agg.aggregateFunction match { + // `Max`, `Min`, `First` and `Last` are always distinct aggregate functions no matter + // they have DISTINCT keyword or not, as the result will be same. + case _: Max => true + case _: Min => true + case _: First => true + case _: Last => true + case _ => false + }) + } + if (isAllDistinctAgg) { + a.withNewChildren(Seq(replaceTableScanWithPartitionMetadata(child, relation))) + } else { + a + } + } else { + a + } + } + } + + /** + * Returns the partition attributes of the table relation plan. + */ + private def getPartitionAttrs( + partitionColumnNames: Seq[String], + relation: LogicalPlan): Seq[Attribute] = { + val partColumns = partitionColumnNames.map(_.toLowerCase).toSet + relation.output.filter(a => partColumns.contains(a.name.toLowerCase)) + } + + /** + * Transform the given plan, find its table scan nodes that matches the given relation, and then + * replace the table scan node with its corresponding partition values. + */ + private def replaceTableScanWithPartitionMetadata( + child: LogicalPlan, + relation: LogicalPlan): LogicalPlan = { + child transform { + case plan if plan eq relation => + relation match { + case l @ LogicalRelation(fsRelation: HadoopFsRelation, _, _) => + val partAttrs = getPartitionAttrs(fsRelation.partitionSchema.map(_.name), l) + val partitionData = fsRelation.location.listFiles(filters = Nil) + LocalRelation(partAttrs, partitionData.map(_.values)) + + case relation: CatalogRelation => + val partAttrs = getPartitionAttrs(relation.catalogTable.partitionColumnNames, relation) + val partitionData = catalog.listPartitions(relation.catalogTable.identifier).map { p => + InternalRow.fromSeq(partAttrs.map { attr => + Cast(Literal(p.spec(attr.name)), attr.dataType).eval() + }) + } + LocalRelation(partAttrs, partitionData) + + case _ => + throw new IllegalStateException(s"unrecognized table scan node: $relation, " + + s"please turn off ${SQLConf.OPTIMIZER_METADATA_ONLY.key} and try again.") + } + } + } + + /** + * A pattern that finds the partitioned table relation node inside the given plan, and returns a + * pair of the partition attributes and the table relation node. + * + * It keeps traversing down the given plan tree if there is a [[Project]] or [[Filter]] with + * deterministic expressions, and returns result after reaching the partitioned table relation + * node. + */ + object PartitionedRelation { + + def unapply(plan: LogicalPlan): Option[(AttributeSet, LogicalPlan)] = plan match { + case l @ LogicalRelation(fsRelation: HadoopFsRelation, _, _) + if fsRelation.partitionSchema.nonEmpty => + val partAttrs = getPartitionAttrs(fsRelation.partitionSchema.map(_.name), l) + Some(AttributeSet(partAttrs), l) + + case relation: CatalogRelation if relation.catalogTable.partitionColumnNames.nonEmpty => + val partAttrs = getPartitionAttrs(relation.catalogTable.partitionColumnNames, relation) + Some(AttributeSet(partAttrs), relation) + + case p @ Project(projectList, child) if projectList.forall(_.deterministic) => + unapply(child).flatMap { case (partAttrs, relation) => + if (p.references.subsetOf(partAttrs)) Some(p.outputSet, relation) else None + } + + case f @ Filter(condition, child) if condition.deterministic => + unapply(child).flatMap { case (partAttrs, relation) => + if (f.references.subsetOf(partAttrs)) Some(partAttrs, relation) else None + } + + case _ => None + } + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkOptimizer.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkOptimizer.scala index 12a10cba20..8b762b5d6c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkOptimizer.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkOptimizer.scala @@ -30,6 +30,7 @@ class SparkOptimizer( extends Optimizer(catalog, conf) { override def batches: Seq[Batch] = super.batches :+ + Batch("Optimize Metadata Only Query", Once, OptimizeMetadataOnlyQuery(catalog, conf)) :+ Batch("Extract Python UDF from Aggregate", Once, ExtractPythonUDFFromAggregate) :+ Batch("User Provided Optimizers", fixedPoint, experimentalMethods.extraOptimizations: _*) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala b/sql/core/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala index 5ab0c1d4c4..14a1680faf 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/internal/SQLConf.scala @@ -258,6 +258,14 @@ object SQLConf { .booleanConf .createWithDefault(false) + val OPTIMIZER_METADATA_ONLY = SQLConfigBuilder("spark.sql.optimizer.metadataOnly") + .doc("When true, enable the metadata-only query optimization that use the table's metadata " + + "to produce the partition columns instead of table scans. It applies when all the columns " + + "scanned are partition columns and the query has an aggregate operator that satisfies " + + "distinct semantics.") + .booleanConf + .createWithDefault(true) + val COLUMN_NAME_OF_CORRUPT_RECORD = SQLConfigBuilder("spark.sql.columnNameOfCorruptRecord") .doc("The name of internal column for storing raw/un-parsed JSON records that fail to parse.") .stringConf @@ -594,6 +602,8 @@ private[sql] class SQLConf extends Serializable with CatalystConf with Logging { def metastorePartitionPruning: Boolean = getConf(HIVE_METASTORE_PARTITION_PRUNING) + def optimizerMetadataOnly: Boolean = getConf(OPTIMIZER_METADATA_ONLY) + def wholeStageEnabled: Boolean = getConf(WHOLESTAGE_CODEGEN_ENABLED) def wholeStageMaxNumFields: Int = getConf(WHOLESTAGE_MAX_NUM_FIELDS) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index ede7d9a0c9..eeaa0103a0 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -2929,4 +2929,40 @@ class SQLQuerySuite extends QueryTest with SharedSQLContext { sql(s"SELECT '$literal' AS DUMMY"), Row(s"$expected") :: Nil) } + + test("SPARK-15752 optimize metadata only query for datasource table") { + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "true") { + withTable("srcpart_15752") { + val data = (1 to 10).map(i => (i, s"data-$i", i % 2, if ((i % 2) == 0) "a" else "b")) + .toDF("col1", "col2", "partcol1", "partcol2") + data.write.partitionBy("partcol1", "partcol2").mode("append").saveAsTable("srcpart_15752") + checkAnswer( + sql("select partcol1 from srcpart_15752 group by partcol1"), + Row(0) :: Row(1) :: Nil) + checkAnswer( + sql("select partcol1 from srcpart_15752 where partcol1 = 1 group by partcol1"), + Row(1)) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srcpart_15752 group by partcol1"), + Row(0, 1) :: Row(1, 1) :: Nil) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srcpart_15752 where partcol1 = 1 " + + "group by partcol1"), + Row(1, 1) :: Nil) + checkAnswer(sql("select distinct partcol1 from srcpart_15752"), Row(0) :: Row(1) :: Nil) + checkAnswer(sql("select distinct partcol1 from srcpart_15752 where partcol1 = 1"), Row(1)) + checkAnswer( + sql("select distinct col from (select partcol1 + 1 as col from srcpart_15752 " + + "where partcol1 = 1) t"), + Row(2)) + checkAnswer(sql("select max(partcol1) from srcpart_15752"), Row(1)) + checkAnswer(sql("select max(partcol1) from srcpart_15752 where partcol1 = 1"), Row(1)) + checkAnswer(sql("select max(partcol1) from (select partcol1 from srcpart_15752) t"), Row(1)) + checkAnswer( + sql("select max(col) from (select partcol1 + 1 as col from srcpart_15752 " + + "where partcol1 = 1) t"), + Row(2)) + } + } + } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuerySuite.scala new file mode 100644 index 0000000000..58c310596c --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/execution/OptimizeMetadataOnlyQuerySuite.scala @@ -0,0 +1,120 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.execution + +import org.apache.spark.sql._ +import org.apache.spark.sql.catalyst.plans.logical.LocalRelation +import org.apache.spark.sql.internal.SQLConf +import org.apache.spark.sql.test.SharedSQLContext + +class OptimizeMetadataOnlyQuerySuite extends QueryTest with SharedSQLContext { + import testImplicits._ + + override def beforeAll(): Unit = { + super.beforeAll() + val data = (1 to 10).map(i => (i, s"data-$i", i % 2, if ((i % 2) == 0) "even" else "odd")) + .toDF("col1", "col2", "partcol1", "partcol2") + data.write.partitionBy("partcol1", "partcol2").mode("append").saveAsTable("srcpart") + } + + override protected def afterAll(): Unit = { + try { + sql("DROP TABLE IF EXISTS srcpart") + } finally { + super.afterAll() + } + } + + private def assertMetadataOnlyQuery(df: DataFrame): Unit = { + val localRelations = df.queryExecution.optimizedPlan.collect { + case l @ LocalRelation(_, _) => l + } + assert(localRelations.size == 1) + } + + private def assertNotMetadataOnlyQuery(df: DataFrame): Unit = { + val localRelations = df.queryExecution.optimizedPlan.collect { + case l @ LocalRelation(_, _) => l + } + assert(localRelations.size == 0) + } + + private def testMetadataOnly(name: String, sqls: String*): Unit = { + test(name) { + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "true") { + sqls.foreach { case q => assertMetadataOnlyQuery(sql(q)) } + } + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "false") { + sqls.foreach { case q => assertNotMetadataOnlyQuery(sql(q)) } + } + } + } + + private def testNotMetadataOnly(name: String, sqls: String*): Unit = { + test(name) { + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "true") { + sqls.foreach { case q => assertNotMetadataOnlyQuery(sql(q)) } + } + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "false") { + sqls.foreach { case q => assertNotMetadataOnlyQuery(sql(q)) } + } + } + } + + testMetadataOnly( + "Aggregate expression is partition columns", + "select partcol1 from srcpart group by partcol1", + "select partcol2 from srcpart where partcol1 = 0 group by partcol2") + + testMetadataOnly( + "Distinct aggregate function on partition columns", + "SELECT partcol1, count(distinct partcol2) FROM srcpart group by partcol1", + "SELECT partcol1, count(distinct partcol2) FROM srcpart where partcol1 = 0 group by partcol1") + + testMetadataOnly( + "Distinct on partition columns", + "select distinct partcol1, partcol2 from srcpart", + "select distinct c1 from (select partcol1 + 1 as c1 from srcpart where partcol1 = 0) t") + + testMetadataOnly( + "Aggregate function on partition columns which have same result w or w/o DISTINCT keyword", + "select max(partcol1) from srcpart", + "select min(partcol1) from srcpart where partcol1 = 0", + "select first(partcol1) from srcpart", + "select last(partcol1) from srcpart where partcol1 = 0", + "select partcol2, min(partcol1) from srcpart where partcol1 = 0 group by partcol2", + "select max(c1) from (select partcol1 + 1 as c1 from srcpart where partcol1 = 0) t") + + testNotMetadataOnly( + "Don't optimize metadata only query for non-partition columns", + "select col1 from srcpart group by col1", + "select partcol1, max(col1) from srcpart group by partcol1", + "select partcol1, count(distinct col1) from srcpart group by partcol1", + "select distinct partcol1, col1 from srcpart") + + testNotMetadataOnly( + "Don't optimize metadata only query for non-distinct aggregate function on partition columns", + "select partcol1, sum(partcol2) from srcpart group by partcol1", + "select partcol1, count(partcol2) from srcpart group by partcol1") + + testNotMetadataOnly( + "Don't optimize metadata only query for GroupingSet/Union operator", + "select partcol1, max(partcol2) from srcpart where partcol1 = 0 group by rollup (partcol1)", + "select partcol2 from (select partcol2 from srcpart where partcol1 = 0 union all " + + "select partcol2 from srcpart where partcol1 = 1) t group by partcol2") +} diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala index e8af4fbe87..a43f0d0d7e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala @@ -1689,4 +1689,93 @@ class SQLQuerySuite extends QueryTest with SQLTestUtils with TestHiveSingleton { ) } } + + test("SPARK-15752 optimize metadata only query for hive table") { + withSQLConf(SQLConf.OPTIMIZER_METADATA_ONLY.key -> "true") { + withTable("data_15752", "srcpart_15752", "srctext_15752") { + val df = Seq((1, "2"), (3, "4")).toDF("key", "value") + df.createOrReplaceTempView("data_15752") + sql( + """ + |CREATE TABLE srcpart_15752 (col1 INT, col2 STRING) + |PARTITIONED BY (partcol1 INT, partcol2 STRING) STORED AS parquet + """.stripMargin) + for (partcol1 <- Seq(0, 1); partcol2 <- Seq("a", "b")) { + sql( + s""" + |INSERT OVERWRITE TABLE srcpart_15752 + |PARTITION (partcol1='$partcol1', partcol2='$partcol2') + |select key, value from data_15752 + """.stripMargin) + } + checkAnswer( + sql("select partcol1 from srcpart_15752 group by partcol1"), + Row(0) :: Row(1) :: Nil) + checkAnswer( + sql("select partcol1 from srcpart_15752 where partcol1 = 1 group by partcol1"), + Row(1)) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srcpart_15752 group by partcol1"), + Row(0, 2) :: Row(1, 2) :: Nil) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srcpart_15752 where partcol1 = 1 " + + "group by partcol1"), + Row(1, 2) :: Nil) + checkAnswer(sql("select distinct partcol1 from srcpart_15752"), Row(0) :: Row(1) :: Nil) + checkAnswer(sql("select distinct partcol1 from srcpart_15752 where partcol1 = 1"), Row(1)) + checkAnswer( + sql("select distinct col from (select partcol1 + 1 as col from srcpart_15752 " + + "where partcol1 = 1) t"), + Row(2)) + checkAnswer(sql("select distinct partcol1 from srcpart_15752 where partcol1 = 1"), Row(1)) + checkAnswer(sql("select max(partcol1) from srcpart_15752"), Row(1)) + checkAnswer(sql("select max(partcol1) from srcpart_15752 where partcol1 = 1"), Row(1)) + checkAnswer(sql("select max(partcol1) from (select partcol1 from srcpart_15752) t"), Row(1)) + checkAnswer( + sql("select max(col) from (select partcol1 + 1 as col from srcpart_15752 " + + "where partcol1 = 1) t"), + Row(2)) + + sql( + """ + |CREATE TABLE srctext_15752 (col1 INT, col2 STRING) + |PARTITIONED BY (partcol1 INT, partcol2 STRING) STORED AS textfile + """.stripMargin) + for (partcol1 <- Seq(0, 1); partcol2 <- Seq("a", "b")) { + sql( + s""" + |INSERT OVERWRITE TABLE srctext_15752 + |PARTITION (partcol1='$partcol1', partcol2='$partcol2') + |select key, value from data_15752 + """.stripMargin) + } + checkAnswer( + sql("select partcol1 from srctext_15752 group by partcol1"), + Row(0) :: Row(1) :: Nil) + checkAnswer( + sql("select partcol1 from srctext_15752 where partcol1 = 1 group by partcol1"), + Row(1)) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srctext_15752 group by partcol1"), + Row(0, 2) :: Row(1, 2) :: Nil) + checkAnswer( + sql("select partcol1, count(distinct partcol2) from srctext_15752 where partcol1 = 1 " + + "group by partcol1"), + Row(1, 2) :: Nil) + checkAnswer(sql("select distinct partcol1 from srctext_15752"), Row(0) :: Row(1) :: Nil) + checkAnswer(sql("select distinct partcol1 from srctext_15752 where partcol1 = 1"), Row(1)) + checkAnswer( + sql("select distinct col from (select partcol1 + 1 as col from srctext_15752 " + + "where partcol1 = 1) t"), + Row(2)) + checkAnswer(sql("select max(partcol1) from srctext_15752"), Row(1)) + checkAnswer(sql("select max(partcol1) from srctext_15752 where partcol1 = 1"), Row(1)) + checkAnswer(sql("select max(partcol1) from (select partcol1 from srctext_15752) t"), Row(1)) + checkAnswer( + sql("select max(col) from (select partcol1 + 1 as col from srctext_15752 " + + "where partcol1 = 1) t"), + Row(2)) + } + } + } } -- GitLab