From 5aa804f3c6485670937a658ce8207c2317c6a506 Mon Sep 17 00:00:00 2001 From: MechCoder <manojkumarsivaraj334@gmail.com> Date: Sat, 6 Jun 2015 14:52:14 -0700 Subject: [PATCH] [SPARK-7639] [PYSPARK] [MLLIB] Python API for KernelDensity Python API for KernelDensity Author: MechCoder <manojkumarsivaraj334@gmail.com> Closes #6387 from MechCoder/spark-7639 and squashes the following commits: 17abc62 [MechCoder] add tests 2de6540 [MechCoder] style tests bf4acc0 [MechCoder] Added doctests 84359d5 [MechCoder] [SPARK-7639] Python API for KernelDensity --- .../mllib/api/python/PythonMLLibAPI.scala | 12 +++- python/pyspark/mllib/stat/KernelDensity.py | 61 +++++++++++++++++++ python/pyspark/mllib/stat/__init__.py | 3 +- python/run-tests | 1 + 4 files changed, 75 insertions(+), 2 deletions(-) create mode 100644 python/pyspark/mllib/stat/KernelDensity.py diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala index 16f3131796..8f66bc808a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala @@ -43,7 +43,8 @@ import org.apache.spark.mllib.regression._ import org.apache.spark.mllib.stat.correlation.CorrelationNames import org.apache.spark.mllib.stat.distribution.MultivariateGaussian import org.apache.spark.mllib.stat.test.ChiSqTestResult -import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} +import org.apache.spark.mllib.stat.{ + KernelDensity, MultivariateStatisticalSummary, Statistics} import org.apache.spark.mllib.tree.configuration.{Algo, BoostingStrategy, Strategy} import org.apache.spark.mllib.tree.impurity._ import org.apache.spark.mllib.tree.loss.Losses @@ -945,6 +946,15 @@ private[python] class PythonMLLibAPI extends Serializable { r => (r.getSeq(0).toArray[Any], r.getSeq(1).toArray[Any]))) } + /** + * Java stub for the estimate method of KernelDensity + */ + def estimateKernelDensity( + sample: JavaRDD[Double], + bandwidth: Double, points: java.util.ArrayList[Double]): Array[Double] = { + return new KernelDensity().setSample(sample).setBandwidth(bandwidth).estimate( + points.asScala.toArray) + } } diff --git a/python/pyspark/mllib/stat/KernelDensity.py b/python/pyspark/mllib/stat/KernelDensity.py new file mode 100644 index 0000000000..7da921976d --- /dev/null +++ b/python/pyspark/mllib/stat/KernelDensity.py @@ -0,0 +1,61 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import sys + +if sys.version > '3': + xrange = range + +import numpy as np + +from pyspark.mllib.common import callMLlibFunc +from pyspark.rdd import RDD + + +class KernelDensity(object): + """ + .. note:: Experimental + + Estimate probability density at required points given a RDD of samples + from the population. + + >>> kd = KernelDensity() + >>> sample = sc.parallelize([0.0, 1.0]) + >>> kd.setSample(sample) + >>> kd.estimate([0.0, 1.0]) + array([ 0.12938758, 0.12938758]) + """ + def __init__(self): + self._bandwidth = 1.0 + self._sample = None + + def setBandwidth(self, bandwidth): + """Set bandwidth of each sample. Defaults to 1.0""" + self._bandwidth = bandwidth + + def setSample(self, sample): + """Set sample points from the population. Should be a RDD""" + if not isinstance(sample, RDD): + raise TypeError("samples should be a RDD, received %s" % type(sample)) + self._sample = sample + + def estimate(self, points): + """Estimate the probability density at points""" + points = list(points) + densities = callMLlibFunc( + "estimateKernelDensity", self._sample, self._bandwidth, points) + return np.asarray(densities) diff --git a/python/pyspark/mllib/stat/__init__.py b/python/pyspark/mllib/stat/__init__.py index e3e128513e..c8a721d3fe 100644 --- a/python/pyspark/mllib/stat/__init__.py +++ b/python/pyspark/mllib/stat/__init__.py @@ -22,6 +22,7 @@ Python package for statistical functions in MLlib. from pyspark.mllib.stat._statistics import * from pyspark.mllib.stat.distribution import MultivariateGaussian from pyspark.mllib.stat.test import ChiSqTestResult +from pyspark.mllib.stat.KernelDensity import KernelDensity __all__ = ["Statistics", "MultivariateStatisticalSummary", "ChiSqTestResult", - "MultivariateGaussian"] + "MultivariateGaussian", "KernelDensity"] diff --git a/python/run-tests b/python/run-tests index 17dda3eada..4468fdb3f2 100755 --- a/python/run-tests +++ b/python/run-tests @@ -93,6 +93,7 @@ function run_mllib_tests() { run_test "pyspark.mllib.recommendation" run_test "pyspark.mllib.regression" run_test "pyspark.mllib.stat._statistics" + run_test "pyspark.mllib.stat.KernelDensity" run_test "pyspark.mllib.tree" run_test "pyspark.mllib.util" run_test "pyspark.mllib.tests" -- GitLab