From 4852b7d447e872079c2c81428354adc825a87b27 Mon Sep 17 00:00:00 2001 From: actuaryzhang <actuaryzhang10@gmail.com> Date: Wed, 5 Jul 2017 18:41:00 +0800 Subject: [PATCH] [SPARK-21310][ML][PYSPARK] Expose offset in PySpark ## What changes were proposed in this pull request? Add offset to PySpark in GLM as in #16699. ## How was this patch tested? Python test Author: actuaryzhang <actuaryzhang10@gmail.com> Closes #18534 from actuaryzhang/pythonOffset. --- python/pyspark/ml/regression.py | 25 +++++++++++++++++++++---- python/pyspark/ml/tests.py | 14 ++++++++++++++ 2 files changed, 35 insertions(+), 4 deletions(-) diff --git a/python/pyspark/ml/regression.py b/python/pyspark/ml/regression.py index 84d843369e..f0ff7a5f59 100644 --- a/python/pyspark/ml/regression.py +++ b/python/pyspark/ml/regression.py @@ -1376,17 +1376,20 @@ class GeneralizedLinearRegression(JavaEstimator, HasLabelCol, HasFeaturesCol, Ha typeConverter=TypeConverters.toFloat) solver = Param(Params._dummy(), "solver", "The solver algorithm for optimization. Supported " + "options: irls.", typeConverter=TypeConverters.toString) + offsetCol = Param(Params._dummy(), "offsetCol", "The offset column name. If this is not set " + + "or empty, we treat all instance offsets as 0.0", + typeConverter=TypeConverters.toString) @keyword_only def __init__(self, labelCol="label", featuresCol="features", predictionCol="prediction", family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, - variancePower=0.0, linkPower=None): + variancePower=0.0, linkPower=None, offsetCol=None): """ __init__(self, labelCol="label", featuresCol="features", predictionCol="prediction", \ family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ - variancePower=0.0, linkPower=None) + variancePower=0.0, linkPower=None, offsetCol=None) """ super(GeneralizedLinearRegression, self).__init__() self._java_obj = self._new_java_obj( @@ -1402,12 +1405,12 @@ class GeneralizedLinearRegression(JavaEstimator, HasLabelCol, HasFeaturesCol, Ha def setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction", family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, - variancePower=0.0, linkPower=None): + variancePower=0.0, linkPower=None, offsetCol=None): """ setParams(self, labelCol="label", featuresCol="features", predictionCol="prediction", \ family="gaussian", link=None, fitIntercept=True, maxIter=25, tol=1e-6, \ regParam=0.0, weightCol=None, solver="irls", linkPredictionCol=None, \ - variancePower=0.0, linkPower=None) + variancePower=0.0, linkPower=None, offsetCol=None) Sets params for generalized linear regression. """ kwargs = self._input_kwargs @@ -1486,6 +1489,20 @@ class GeneralizedLinearRegression(JavaEstimator, HasLabelCol, HasFeaturesCol, Ha """ return self.getOrDefault(self.linkPower) + @since("2.3.0") + def setOffsetCol(self, value): + """ + Sets the value of :py:attr:`offsetCol`. + """ + return self._set(offsetCol=value) + + @since("2.3.0") + def getOffsetCol(self): + """ + Gets the value of offsetCol or its default value. + """ + return self.getOrDefault(self.offsetCol) + class GeneralizedLinearRegressionModel(JavaModel, JavaPredictionModel, JavaMLWritable, JavaMLReadable): diff --git a/python/pyspark/ml/tests.py b/python/pyspark/ml/tests.py index ffb8b0a890..7870047651 100755 --- a/python/pyspark/ml/tests.py +++ b/python/pyspark/ml/tests.py @@ -1291,6 +1291,20 @@ class GeneralizedLinearRegressionTest(SparkSessionTestCase): self.assertTrue(np.allclose(model2.coefficients.toArray(), [-0.6667, 0.5], atol=1E-4)) self.assertTrue(np.isclose(model2.intercept, 0.6667, atol=1E-4)) + def test_offset(self): + + df = self.spark.createDataFrame( + [(0.2, 1.0, 2.0, Vectors.dense(0.0, 5.0)), + (0.5, 2.1, 0.5, Vectors.dense(1.0, 2.0)), + (0.9, 0.4, 1.0, Vectors.dense(2.0, 1.0)), + (0.7, 0.7, 0.0, Vectors.dense(3.0, 3.0))], ["label", "weight", "offset", "features"]) + + glr = GeneralizedLinearRegression(family="poisson", weightCol="weight", offsetCol="offset") + model = glr.fit(df) + self.assertTrue(np.allclose(model.coefficients.toArray(), [0.664647, -0.3192581], + atol=1E-4)) + self.assertTrue(np.isclose(model.intercept, -1.561613, atol=1E-4)) + class FPGrowthTests(SparkSessionTestCase): def setUp(self): -- GitLab