diff --git a/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala index 83f1344a7bcb122d7eb408a463778d7cd40bf984..a47bd17f47bb1b051b81a1f11534287dd74bd341 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala @@ -749,15 +749,15 @@ class GeneralizedLinearRegressionSuite library(statmod) y <- c(1.0, 0.5, 0.7, 0.3) w <- c(1, 2, 3, 4) - for (fam in list(gaussian(), poisson(), binomial(), Gamma(), tweedie(1.6))) { + for (fam in list(binomial(), Gamma(), gaussian(), poisson(), tweedie(1.6))) { model1 <- glm(y ~ 1, family = fam) model2 <- glm(y ~ 1, family = fam, weights = w) print(as.vector(c(coef(model1), coef(model2)))) } - [1] 0.625 0.530 - [1] -0.4700036 -0.6348783 [1] 0.5108256 0.1201443 [1] 1.600000 1.886792 + [1] 0.625 0.530 + [1] -0.4700036 -0.6348783 [1] 1.325782 1.463641 */ @@ -768,13 +768,13 @@ class GeneralizedLinearRegressionSuite Instance(0.3, 4.0, Vectors.zeros(0)) ).toDF() - val expected = Seq(0.625, 0.530, -0.4700036, -0.6348783, 0.5108256, 0.1201443, - 1.600000, 1.886792, 1.325782, 1.463641) + val expected = Seq(0.5108256, 0.1201443, 1.600000, 1.886792, 0.625, 0.530, + -0.4700036, -0.6348783, 1.325782, 1.463641) import GeneralizedLinearRegression._ var idx = 0 - for (family <- Seq("gaussian", "poisson", "binomial", "gamma", "tweedie")) { + for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) { for (useWeight <- Seq(false, true)) { val trainer = new GeneralizedLinearRegression().setFamily(family) if (useWeight) trainer.setWeightCol("weight") @@ -807,7 +807,7 @@ class GeneralizedLinearRegressionSuite 0.5, 2.1, 0.5, 1.0, 2.0, 0.9, 0.4, 1.0, 2.0, 1.0, 0.7, 0.7, 0.0, 3.0, 3.0), 4, 5, byrow = TRUE)) - families <- list(gaussian, binomial, poisson, Gamma, tweedie(1.5)) + families <- list(binomial, Gamma, gaussian, poisson, tweedie(1.5)) f1 <- V1 ~ -1 + V4 + V5 f2 <- V1 ~ V4 + V5 for (f in c(f1, f2)) { @@ -816,15 +816,15 @@ class GeneralizedLinearRegressionSuite print(as.vector(coef(model))) } } - [1] 0.5169222 -0.3344444 [1] 0.9419107 -0.6864404 - [1] 0.1812436 -0.6568422 [1] -0.2869094 0.7857710 + [1] 0.5169222 -0.3344444 + [1] 0.1812436 -0.6568422 [1] 0.1055254 0.2979113 - [1] -0.05990345 0.53188982 -0.32118415 [1] -0.2147117 0.9911750 -0.6356096 - [1] -1.5616130 0.6646470 -0.3192581 [1] 0.3390397 -0.3406099 0.6870259 + [1] -0.05990345 0.53188982 -0.32118415 + [1] -1.5616130 0.6646470 -0.3192581 [1] 0.3665034 0.1039416 0.1484616 */ val dataset = Seq( @@ -835,23 +835,22 @@ class GeneralizedLinearRegressionSuite ).toDF() val expected = Seq( - Vectors.dense(0, 0.5169222, -0.3344444), Vectors.dense(0, 0.9419107, -0.6864404), - Vectors.dense(0, 0.1812436, -0.6568422), Vectors.dense(0, -0.2869094, 0.785771), + Vectors.dense(0, 0.5169222, -0.3344444), + Vectors.dense(0, 0.1812436, -0.6568422), Vectors.dense(0, 0.1055254, 0.2979113), - Vectors.dense(-0.05990345, 0.53188982, -0.32118415), Vectors.dense(-0.2147117, 0.991175, -0.6356096), - Vectors.dense(-1.561613, 0.664647, -0.3192581), Vectors.dense(0.3390397, -0.3406099, 0.6870259), + Vectors.dense(-0.05990345, 0.53188982, -0.32118415), + Vectors.dense(-1.561613, 0.664647, -0.3192581), Vectors.dense(0.3665034, 0.1039416, 0.1484616)) import GeneralizedLinearRegression._ var idx = 0 - for (fitIntercept <- Seq(false, true)) { - for (family <- Seq("gaussian", "binomial", "poisson", "gamma", "tweedie")) { + for (family <- GeneralizedLinearRegression.supportedFamilyNames.sortWith(_ < _)) { val trainer = new GeneralizedLinearRegression().setFamily(family) .setFitIntercept(fitIntercept).setOffsetCol("offset") .setWeightCol("weight").setLinkPredictionCol("linkPrediction")