diff --git a/docs/ml-guide.md b/docs/ml-guide.md index 4607ad3ba681ab284b3d23fc33179680b59c5fa6..ddf81be177f3d9c40dd2418f51df5e4d93661b26 100644 --- a/docs/ml-guide.md +++ b/docs/ml-guide.md @@ -60,152 +60,34 @@ MLlib is under active development. The APIs marked `Experimental`/`DeveloperApi` may change in future releases, and the migration guide below will explain all changes between releases. -## From 1.6 to 2.0 +## From 2.0 to 2.1 ### Breaking changes - -There were several breaking changes in Spark 2.0, which are outlined below. - -**Linear algebra classes for DataFrame-based APIs** - -Spark's linear algebra dependencies were moved to a new project, `mllib-local` -(see [SPARK-13944](https://issues.apache.org/jira/browse/SPARK-13944)). -As part of this change, the linear algebra classes were copied to a new package, `spark.ml.linalg`. -The DataFrame-based APIs in `spark.ml` now depend on the `spark.ml.linalg` classes, -leading to a few breaking changes, predominantly in various model classes -(see [SPARK-14810](https://issues.apache.org/jira/browse/SPARK-14810) for a full list). - -**Note:** the RDD-based APIs in `spark.mllib` continue to depend on the previous package `spark.mllib.linalg`. - -_Converting vectors and matrices_ - -While most pipeline components support backward compatibility for loading, -some existing `DataFrames` and pipelines in Spark versions prior to 2.0, that contain vector or matrix -columns, may need to be migrated to the new `spark.ml` vector and matrix types. -Utilities for converting `DataFrame` columns from `spark.mllib.linalg` to `spark.ml.linalg` types -(and vice versa) can be found in `spark.mllib.util.MLUtils`. - -There are also utility methods available for converting single instances of -vectors and matrices. Use the `asML` method on a `mllib.linalg.Vector` / `mllib.linalg.Matrix` -for converting to `ml.linalg` types, and -`mllib.linalg.Vectors.fromML` / `mllib.linalg.Matrices.fromML` -for converting to `mllib.linalg` types. - -<div class="codetabs"> -<div data-lang="scala" markdown="1"> - -{% highlight scala %} -import org.apache.spark.mllib.util.MLUtils - -// convert DataFrame columns -val convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF) -val convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF) -// convert a single vector or matrix -val mlVec: org.apache.spark.ml.linalg.Vector = mllibVec.asML -val mlMat: org.apache.spark.ml.linalg.Matrix = mllibMat.asML -{% endhighlight %} - -Refer to the [`MLUtils` Scala docs](api/scala/index.html#org.apache.spark.mllib.util.MLUtils$) for further detail. -</div> - -<div data-lang="java" markdown="1"> - -{% highlight java %} -import org.apache.spark.mllib.util.MLUtils; -import org.apache.spark.sql.Dataset; - -// convert DataFrame columns -Dataset<Row> convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF); -Dataset<Row> convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF); -// convert a single vector or matrix -org.apache.spark.ml.linalg.Vector mlVec = mllibVec.asML(); -org.apache.spark.ml.linalg.Matrix mlMat = mllibMat.asML(); -{% endhighlight %} - -Refer to the [`MLUtils` Java docs](api/java/org/apache/spark/mllib/util/MLUtils.html) for further detail. -</div> - -<div data-lang="python" markdown="1"> - -{% highlight python %} -from pyspark.mllib.util import MLUtils - -# convert DataFrame columns -convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF) -convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF) -# convert a single vector or matrix -mlVec = mllibVec.asML() -mlMat = mllibMat.asML() -{% endhighlight %} - -Refer to the [`MLUtils` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.util.MLUtils) for further detail. -</div> -</div> - + **Deprecated methods removed** -Several deprecated methods were removed in the `spark.mllib` and `spark.ml` packages: - -* `setScoreCol` in `ml.evaluation.BinaryClassificationEvaluator` -* `weights` in `LinearRegression` and `LogisticRegression` in `spark.ml` -* `setMaxNumIterations` in `mllib.optimization.LBFGS` (marked as `DeveloperApi`) -* `treeReduce` and `treeAggregate` in `mllib.rdd.RDDFunctions` (these functions are available on `RDD`s directly, and were marked as `DeveloperApi`) -* `defaultStategy` in `mllib.tree.configuration.Strategy` -* `build` in `mllib.tree.Node` -* libsvm loaders for multiclass and load/save labeledData methods in `mllib.util.MLUtils` - -A full list of breaking changes can be found at [SPARK-14810](https://issues.apache.org/jira/browse/SPARK-14810). +* `setLabelCol` in `feature.ChiSqSelectorModel` +* `numTrees` in `classification.RandomForestClassificationModel` (This now refers to the Param called `numTrees`) +* `numTrees` in `regression.RandomForestRegressionModel` (This now refers to the Param called `numTrees`) +* `model` in `regression.LinearRegressionSummary` +* `validateParams` in `PipelineStage` +* `validateParams` in `Evaluator` ### Deprecations and changes of behavior **Deprecations** -Deprecations in the `spark.mllib` and `spark.ml` packages include: - -* [SPARK-14984](https://issues.apache.org/jira/browse/SPARK-14984): - In `spark.ml.regression.LinearRegressionSummary`, the `model` field has been deprecated. -* [SPARK-13784](https://issues.apache.org/jira/browse/SPARK-13784): - In `spark.ml.regression.RandomForestRegressionModel` and `spark.ml.classification.RandomForestClassificationModel`, - the `numTrees` parameter has been deprecated in favor of `getNumTrees` method. -* [SPARK-13761](https://issues.apache.org/jira/browse/SPARK-13761): - In `spark.ml.param.Params`, the `validateParams` method has been deprecated. - We move all functionality in overridden methods to the corresponding `transformSchema`. -* [SPARK-14829](https://issues.apache.org/jira/browse/SPARK-14829): - In `spark.mllib` package, `LinearRegressionWithSGD`, `LassoWithSGD`, `RidgeRegressionWithSGD` and `LogisticRegressionWithSGD` have been deprecated. - We encourage users to use `spark.ml.regression.LinearRegresson` and `spark.ml.classification.LogisticRegresson`. -* [SPARK-14900](https://issues.apache.org/jira/browse/SPARK-14900): - In `spark.mllib.evaluation.MulticlassMetrics`, the parameters `precision`, `recall` and `fMeasure` have been deprecated in favor of `accuracy`. -* [SPARK-15644](https://issues.apache.org/jira/browse/SPARK-15644): - In `spark.ml.util.MLReader` and `spark.ml.util.MLWriter`, the `context` method has been deprecated in favor of `session`. -* In `spark.ml.feature.ChiSqSelectorModel`, the `setLabelCol` method has been deprecated since it was not used by `ChiSqSelectorModel`. +* [SPARK-18592](https://issues.apache.org/jira/browse/SPARK-18592): + Deprecate all Param setter methods except for input/output column Params for `DecisionTreeClassificationModel`, `GBTClassificationModel`, `RandomForestClassificationModel`, `DecisionTreeRegressionModel`, `GBTRegressionModel` and `RandomForestRegressionModel` **Changes of behavior** -Changes of behavior in the `spark.mllib` and `spark.ml` packages include: - -* [SPARK-7780](https://issues.apache.org/jira/browse/SPARK-7780): - `spark.mllib.classification.LogisticRegressionWithLBFGS` directly calls `spark.ml.classification.LogisticRegresson` for binary classification now. - This will introduce the following behavior changes for `spark.mllib.classification.LogisticRegressionWithLBFGS`: - * The intercept will not be regularized when training binary classification model with L1/L2 Updater. - * If users set without regularization, training with or without feature scaling will return the same solution by the same convergence rate. -* [SPARK-13429](https://issues.apache.org/jira/browse/SPARK-13429): - In order to provide better and consistent result with `spark.ml.classification.LogisticRegresson`, - the default value of `spark.mllib.classification.LogisticRegressionWithLBFGS`: `convergenceTol` has been changed from 1E-4 to 1E-6. -* [SPARK-12363](https://issues.apache.org/jira/browse/SPARK-12363): - Fix a bug of `PowerIterationClustering` which will likely change its result. -* [SPARK-13048](https://issues.apache.org/jira/browse/SPARK-13048): - `LDA` using the `EM` optimizer will keep the last checkpoint by default, if checkpointing is being used. -* [SPARK-12153](https://issues.apache.org/jira/browse/SPARK-12153): - `Word2Vec` now respects sentence boundaries. Previously, it did not handle them correctly. -* [SPARK-10574](https://issues.apache.org/jira/browse/SPARK-10574): - `HashingTF` uses `MurmurHash3` as default hash algorithm in both `spark.ml` and `spark.mllib`. -* [SPARK-14768](https://issues.apache.org/jira/browse/SPARK-14768): - The `expectedType` argument for PySpark `Param` was removed. -* [SPARK-14931](https://issues.apache.org/jira/browse/SPARK-14931): - Some default `Param` values, which were mismatched between pipelines in Scala and Python, have been changed. -* [SPARK-13600](https://issues.apache.org/jira/browse/SPARK-13600): - `QuantileDiscretizer` now uses `spark.sql.DataFrameStatFunctions.approxQuantile` to find splits (previously used custom sampling logic). - The output buckets will differ for same input data and params. +* [SPARK-17870](https://issues.apache.org/jira/browse/SPARK-17870): + Fix a bug of `ChiSqSelector` which will likely change its result. Now `ChiSquareSelector` use pValue rather than raw statistic to select a fixed number of top features. +* [SPARK-3261](https://issues.apache.org/jira/browse/SPARK-3261): + `KMeans` returns potentially fewer than k cluster centers in cases where k distinct centroids aren't available or aren't selected. +* [SPARK-17389](https://issues.apache.org/jira/browse/SPARK-17389): + `KMeans` reduces the default number of steps from 5 to 2 for the k-means|| initialization mode. ## Previous Spark versions diff --git a/docs/ml-migration-guides.md b/docs/ml-migration-guides.md index 82bf9d7760fb4575c95cdfe8b8deb531b6238e81..58c3747ea6387a2ea75b3ef54fc215dcfff01f62 100644 --- a/docs/ml-migration-guides.md +++ b/docs/ml-migration-guides.md @@ -7,6 +7,153 @@ description: MLlib migration guides from before Spark SPARK_VERSION_SHORT The migration guide for the current Spark version is kept on the [MLlib Guide main page](ml-guide.html#migration-guide). +## From 1.6 to 2.0 + +### Breaking changes + +There were several breaking changes in Spark 2.0, which are outlined below. + +**Linear algebra classes for DataFrame-based APIs** + +Spark's linear algebra dependencies were moved to a new project, `mllib-local` +(see [SPARK-13944](https://issues.apache.org/jira/browse/SPARK-13944)). +As part of this change, the linear algebra classes were copied to a new package, `spark.ml.linalg`. +The DataFrame-based APIs in `spark.ml` now depend on the `spark.ml.linalg` classes, +leading to a few breaking changes, predominantly in various model classes +(see [SPARK-14810](https://issues.apache.org/jira/browse/SPARK-14810) for a full list). + +**Note:** the RDD-based APIs in `spark.mllib` continue to depend on the previous package `spark.mllib.linalg`. + +_Converting vectors and matrices_ + +While most pipeline components support backward compatibility for loading, +some existing `DataFrames` and pipelines in Spark versions prior to 2.0, that contain vector or matrix +columns, may need to be migrated to the new `spark.ml` vector and matrix types. +Utilities for converting `DataFrame` columns from `spark.mllib.linalg` to `spark.ml.linalg` types +(and vice versa) can be found in `spark.mllib.util.MLUtils`. + +There are also utility methods available for converting single instances of +vectors and matrices. Use the `asML` method on a `mllib.linalg.Vector` / `mllib.linalg.Matrix` +for converting to `ml.linalg` types, and +`mllib.linalg.Vectors.fromML` / `mllib.linalg.Matrices.fromML` +for converting to `mllib.linalg` types. + +<div class="codetabs"> +<div data-lang="scala" markdown="1"> + +{% highlight scala %} +import org.apache.spark.mllib.util.MLUtils + +// convert DataFrame columns +val convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF) +val convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF) +// convert a single vector or matrix +val mlVec: org.apache.spark.ml.linalg.Vector = mllibVec.asML +val mlMat: org.apache.spark.ml.linalg.Matrix = mllibMat.asML +{% endhighlight %} + +Refer to the [`MLUtils` Scala docs](api/scala/index.html#org.apache.spark.mllib.util.MLUtils$) for further detail. +</div> + +<div data-lang="java" markdown="1"> + +{% highlight java %} +import org.apache.spark.mllib.util.MLUtils; +import org.apache.spark.sql.Dataset; + +// convert DataFrame columns +Dataset<Row> convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF); +Dataset<Row> convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF); +// convert a single vector or matrix +org.apache.spark.ml.linalg.Vector mlVec = mllibVec.asML(); +org.apache.spark.ml.linalg.Matrix mlMat = mllibMat.asML(); +{% endhighlight %} + +Refer to the [`MLUtils` Java docs](api/java/org/apache/spark/mllib/util/MLUtils.html) for further detail. +</div> + +<div data-lang="python" markdown="1"> + +{% highlight python %} +from pyspark.mllib.util import MLUtils + +# convert DataFrame columns +convertedVecDF = MLUtils.convertVectorColumnsToML(vecDF) +convertedMatrixDF = MLUtils.convertMatrixColumnsToML(matrixDF) +# convert a single vector or matrix +mlVec = mllibVec.asML() +mlMat = mllibMat.asML() +{% endhighlight %} + +Refer to the [`MLUtils` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.util.MLUtils) for further detail. +</div> +</div> + +**Deprecated methods removed** + +Several deprecated methods were removed in the `spark.mllib` and `spark.ml` packages: + +* `setScoreCol` in `ml.evaluation.BinaryClassificationEvaluator` +* `weights` in `LinearRegression` and `LogisticRegression` in `spark.ml` +* `setMaxNumIterations` in `mllib.optimization.LBFGS` (marked as `DeveloperApi`) +* `treeReduce` and `treeAggregate` in `mllib.rdd.RDDFunctions` (these functions are available on `RDD`s directly, and were marked as `DeveloperApi`) +* `defaultStategy` in `mllib.tree.configuration.Strategy` +* `build` in `mllib.tree.Node` +* libsvm loaders for multiclass and load/save labeledData methods in `mllib.util.MLUtils` + +A full list of breaking changes can be found at [SPARK-14810](https://issues.apache.org/jira/browse/SPARK-14810). + +### Deprecations and changes of behavior + +**Deprecations** + +Deprecations in the `spark.mllib` and `spark.ml` packages include: + +* [SPARK-14984](https://issues.apache.org/jira/browse/SPARK-14984): + In `spark.ml.regression.LinearRegressionSummary`, the `model` field has been deprecated. +* [SPARK-13784](https://issues.apache.org/jira/browse/SPARK-13784): + In `spark.ml.regression.RandomForestRegressionModel` and `spark.ml.classification.RandomForestClassificationModel`, + the `numTrees` parameter has been deprecated in favor of `getNumTrees` method. +* [SPARK-13761](https://issues.apache.org/jira/browse/SPARK-13761): + In `spark.ml.param.Params`, the `validateParams` method has been deprecated. + We move all functionality in overridden methods to the corresponding `transformSchema`. +* [SPARK-14829](https://issues.apache.org/jira/browse/SPARK-14829): + In `spark.mllib` package, `LinearRegressionWithSGD`, `LassoWithSGD`, `RidgeRegressionWithSGD` and `LogisticRegressionWithSGD` have been deprecated. + We encourage users to use `spark.ml.regression.LinearRegresson` and `spark.ml.classification.LogisticRegresson`. +* [SPARK-14900](https://issues.apache.org/jira/browse/SPARK-14900): + In `spark.mllib.evaluation.MulticlassMetrics`, the parameters `precision`, `recall` and `fMeasure` have been deprecated in favor of `accuracy`. +* [SPARK-15644](https://issues.apache.org/jira/browse/SPARK-15644): + In `spark.ml.util.MLReader` and `spark.ml.util.MLWriter`, the `context` method has been deprecated in favor of `session`. +* In `spark.ml.feature.ChiSqSelectorModel`, the `setLabelCol` method has been deprecated since it was not used by `ChiSqSelectorModel`. + +**Changes of behavior** + +Changes of behavior in the `spark.mllib` and `spark.ml` packages include: + +* [SPARK-7780](https://issues.apache.org/jira/browse/SPARK-7780): + `spark.mllib.classification.LogisticRegressionWithLBFGS` directly calls `spark.ml.classification.LogisticRegresson` for binary classification now. + This will introduce the following behavior changes for `spark.mllib.classification.LogisticRegressionWithLBFGS`: + * The intercept will not be regularized when training binary classification model with L1/L2 Updater. + * If users set without regularization, training with or without feature scaling will return the same solution by the same convergence rate. +* [SPARK-13429](https://issues.apache.org/jira/browse/SPARK-13429): + In order to provide better and consistent result with `spark.ml.classification.LogisticRegresson`, + the default value of `spark.mllib.classification.LogisticRegressionWithLBFGS`: `convergenceTol` has been changed from 1E-4 to 1E-6. +* [SPARK-12363](https://issues.apache.org/jira/browse/SPARK-12363): + Fix a bug of `PowerIterationClustering` which will likely change its result. +* [SPARK-13048](https://issues.apache.org/jira/browse/SPARK-13048): + `LDA` using the `EM` optimizer will keep the last checkpoint by default, if checkpointing is being used. +* [SPARK-12153](https://issues.apache.org/jira/browse/SPARK-12153): + `Word2Vec` now respects sentence boundaries. Previously, it did not handle them correctly. +* [SPARK-10574](https://issues.apache.org/jira/browse/SPARK-10574): + `HashingTF` uses `MurmurHash3` as default hash algorithm in both `spark.ml` and `spark.mllib`. +* [SPARK-14768](https://issues.apache.org/jira/browse/SPARK-14768): + The `expectedType` argument for PySpark `Param` was removed. +* [SPARK-14931](https://issues.apache.org/jira/browse/SPARK-14931): + Some default `Param` values, which were mismatched between pipelines in Scala and Python, have been changed. +* [SPARK-13600](https://issues.apache.org/jira/browse/SPARK-13600): + `QuantileDiscretizer` now uses `spark.sql.DataFrameStatFunctions.approxQuantile` to find splits (previously used custom sampling logic). + The output buckets will differ for same input data and params. + ## From 1.5 to 1.6 There are no breaking API changes in the `spark.mllib` or `spark.ml` packages, but there are