diff --git a/mllib/src/main/scala/spark/mllib/optimization/GradientDescent.scala b/mllib/src/main/scala/spark/mllib/optimization/GradientDescent.scala index 2c5038757b67ab2efce8fa7457f8b61718d40a2b..4c996c0903ed25966ef00967dd012799c949ce52 100644 --- a/mllib/src/main/scala/spark/mllib/optimization/GradientDescent.scala +++ b/mllib/src/main/scala/spark/mllib/optimization/GradientDescent.scala @@ -50,7 +50,7 @@ object GradientDescent { stepSize: Double, numIters: Int, initialWeights: Array[Double], - miniBatchFraction: Double=1.0) : (DoubleMatrix, Array[Double]) = { + miniBatchFraction: Double=1.0) : (Array[Double], Array[Double]) = { val stochasticLossHistory = new ArrayBuffer[Double](numIters) @@ -75,6 +75,6 @@ object GradientDescent { reg_val = update._2 } - (weights, stochasticLossHistory.toArray) + (weights.toArray, stochasticLossHistory.toArray) } } diff --git a/mllib/src/main/scala/spark/mllib/regression/LogisticRegression.scala b/mllib/src/main/scala/spark/mllib/regression/LogisticRegression.scala index ab865af0c68a63d3111b8c62eaa8a423b9a984f2..711e205c39d1de480b3658fbe3cf3dd623d20039 100644 --- a/mllib/src/main/scala/spark/mllib/regression/LogisticRegression.scala +++ b/mllib/src/main/scala/spark/mllib/regression/LogisticRegression.scala @@ -126,10 +126,8 @@ class LogisticRegression private (var stepSize: Double, var miniBatchFraction: D initalWeightsWithIntercept, miniBatchFraction) - val weightsArray = weights.toArray() - - val intercept = weightsArray(0) - val weightsScaled = weightsArray.tail + val intercept = weights(0) + val weightsScaled = weights.tail val model = new LogisticRegressionModel(weightsScaled, intercept, stochasticLosses)