From 205e6d5867b180a85bad58035c917ca13552a0a5 Mon Sep 17 00:00:00 2001 From: Cheng Lian <lian@databricks.com> Date: Wed, 9 Nov 2016 09:49:02 -0800 Subject: [PATCH] [SPARK-18338][SQL][TEST-MAVEN] Fix test case initialization order under Maven builds ## What changes were proposed in this pull request? Test case initialization order under Maven and SBT are different. Maven always creates instances of all test cases and then run them all together. This fails `ObjectHashAggregateSuite` because the randomized test cases there register a temporary Hive function right before creating a test case, and can be cleared while initializing other successive test cases. In SBT, this is fine since the created test case is executed immediately after creating the temporary function. To fix this issue, we should put initialization/destruction code into `beforeAll()` and `afterAll()`. ## How was this patch tested? Existing tests. Author: Cheng Lian <lian@databricks.com> Closes #15802 from liancheng/fix-flaky-object-hash-agg-suite. --- .../execution/ObjectHashAggregateSuite.scala | 23 ++++++++----------- 1 file changed, 10 insertions(+), 13 deletions(-) diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/ObjectHashAggregateSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/ObjectHashAggregateSuite.scala index 527626beeb..93fc5e8a5e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/ObjectHashAggregateSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/ObjectHashAggregateSuite.scala @@ -25,11 +25,10 @@ import org.scalatest.Matchers._ import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.FunctionIdentifier import org.apache.spark.sql.catalyst.analysis.UnresolvedFunction -import org.apache.spark.sql.catalyst.expressions.{ExpressionEvalHelper, ExpressionInfo, Literal} +import org.apache.spark.sql.catalyst.expressions.{ExpressionEvalHelper, Literal} import org.apache.spark.sql.catalyst.expressions.aggregate.ApproximatePercentile import org.apache.spark.sql.execution.aggregate.{HashAggregateExec, ObjectHashAggregateExec, SortAggregateExec} import org.apache.spark.sql.functions._ -import org.apache.spark.sql.hive.HiveSessionCatalog import org.apache.spark.sql.hive.test.TestHiveSingleton import org.apache.spark.sql.internal.SQLConf import org.apache.spark.sql.test.SQLTestUtils @@ -43,6 +42,14 @@ class ObjectHashAggregateSuite import testImplicits._ + protected override def beforeAll(): Unit = { + sql(s"CREATE TEMPORARY FUNCTION hive_max AS '${classOf[GenericUDAFMax].getName}'") + } + + protected override def afterAll(): Unit = { + sql(s"DROP TEMPORARY FUNCTION IF EXISTS hive_max") + } + test("typed_count without grouping keys") { val df = Seq((1: Integer, 2), (null, 2), (3: Integer, 4)).toDF("a", "b") @@ -199,10 +206,7 @@ class ObjectHashAggregateSuite val typed = percentile_approx($"c0", 0.5) // A Hive UDAF without partial aggregation support - val withoutPartial = { - registerHiveFunction("hive_max", classOf[GenericUDAFMax]) - function("hive_max", $"c1") - } + val withoutPartial = function("hive_max", $"c1") // A Spark SQL native aggregate function with partial aggregation support that can be executed // by the Tungsten `HashAggregateExec` @@ -420,13 +424,6 @@ class ObjectHashAggregateSuite } } - private def registerHiveFunction(functionName: String, clazz: Class[_]): Unit = { - val sessionCatalog = spark.sessionState.catalog.asInstanceOf[HiveSessionCatalog] - val builder = sessionCatalog.makeFunctionBuilder(functionName, clazz.getName) - val info = new ExpressionInfo(clazz.getName, functionName) - sessionCatalog.createTempFunction(functionName, info, builder, ignoreIfExists = false) - } - private def function(name: String, args: Column*): Column = { Column(UnresolvedFunction(FunctionIdentifier(name), args.map(_.expr), isDistinct = false)) } -- GitLab