diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala index fdd67160114cae171dfd57af482aed7dba9e6a24..45dbf6044fcc5f3a23b0f9f2c851ae161f26a877 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala @@ -128,7 +128,7 @@ class LeastSquaresGradient extends Gradient { class HingeGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val dotProduct = dot(data, weights) - // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) + // Our loss function with {0, 1} labels is max(0, 1 - (2y - 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) { @@ -146,7 +146,7 @@ class HingeGradient extends Gradient { weights: Vector, cumGradient: Vector): Double = { val dotProduct = dot(data, weights) - // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) + // Our loss function with {0, 1} labels is max(0, 1 - (2y - 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) {