From 1650f6f56ed4b7f1a7f645c9e8d5ac533464bd78 Mon Sep 17 00:00:00 2001 From: Feynman Liang <fliang@databricks.com> Date: Thu, 27 Aug 2015 10:44:44 +0100 Subject: [PATCH] [SPARK-10254] [ML] Removes Guava dependencies in spark.ml.feature JavaTests * Replaces `com.google.common` dependencies with `java.util.Arrays` * Small clean up in `JavaNormalizerSuite` Author: Feynman Liang <fliang@databricks.com> Closes #8445 from feynmanliang/SPARK-10254. --- .../apache/spark/ml/feature/JavaBucketizerSuite.java | 5 +++-- .../org/apache/spark/ml/feature/JavaDCTSuite.java | 5 +++-- .../apache/spark/ml/feature/JavaHashingTFSuite.java | 5 +++-- .../apache/spark/ml/feature/JavaNormalizerSuite.java | 11 +++++------ .../org/apache/spark/ml/feature/JavaPCASuite.java | 4 ++-- .../ml/feature/JavaPolynomialExpansionSuite.java | 5 +++-- .../spark/ml/feature/JavaStandardScalerSuite.java | 4 ++-- .../apache/spark/ml/feature/JavaTokenizerSuite.java | 6 ++++-- .../spark/ml/feature/JavaVectorIndexerSuite.java | 5 ++--- .../spark/ml/feature/JavaVectorSlicerSuite.java | 4 ++-- .../apache/spark/ml/feature/JavaWord2VecSuite.java | 11 ++++++----- 11 files changed, 35 insertions(+), 30 deletions(-) diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaBucketizerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaBucketizerSuite.java index d5bd230a95..47d68de599 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaBucketizerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaBucketizerSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -54,7 +55,7 @@ public class JavaBucketizerSuite { public void bucketizerTest() { double[] splits = {-0.5, 0.0, 0.5}; - JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList( + JavaRDD<Row> data = jsc.parallelize(Arrays.asList( RowFactory.create(-0.5), RowFactory.create(-0.3), RowFactory.create(0.0), diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaDCTSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaDCTSuite.java index 845eed61c4..0f6ec64d97 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaDCTSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaDCTSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import edu.emory.mathcs.jtransforms.dct.DoubleDCT_1D; import org.junit.After; import org.junit.Assert; @@ -56,7 +57,7 @@ public class JavaDCTSuite { @Test public void javaCompatibilityTest() { double[] input = new double[] {1D, 2D, 3D, 4D}; - JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList( + JavaRDD<Row> data = jsc.parallelize(Arrays.asList( RowFactory.create(Vectors.dense(input)) )); DataFrame dataset = jsql.createDataFrame(data, new StructType(new StructField[]{ diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaHashingTFSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaHashingTFSuite.java index 599e9cfd23..03dd5369bd 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaHashingTFSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaHashingTFSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -54,7 +55,7 @@ public class JavaHashingTFSuite { @Test public void hashingTF() { - JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList( + JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList( RowFactory.create(0.0, "Hi I heard about Spark"), RowFactory.create(0.0, "I wish Java could use case classes"), RowFactory.create(1.0, "Logistic regression models are neat") diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaNormalizerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaNormalizerSuite.java index d82f3b7e8c..e17d549c50 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaNormalizerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaNormalizerSuite.java @@ -17,15 +17,15 @@ package org.apache.spark.ml.feature; -import java.util.List; +import java.util.Arrays; -import com.google.common.collect.Lists; import org.junit.After; import org.junit.Before; import org.junit.Test; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.mllib.linalg.Vectors; +import org.apache.spark.api.java.JavaRDD; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.SQLContext; @@ -48,13 +48,12 @@ public class JavaNormalizerSuite { @Test public void normalizer() { // The tests are to check Java compatibility. - List<VectorIndexerSuite.FeatureData> points = Lists.newArrayList( + JavaRDD<VectorIndexerSuite.FeatureData> points = jsc.parallelize(Arrays.asList( new VectorIndexerSuite.FeatureData(Vectors.dense(0.0, -2.0)), new VectorIndexerSuite.FeatureData(Vectors.dense(1.0, 3.0)), new VectorIndexerSuite.FeatureData(Vectors.dense(1.0, 4.0)) - ); - DataFrame dataFrame = jsql.createDataFrame(jsc.parallelize(points, 2), - VectorIndexerSuite.FeatureData.class); + )); + DataFrame dataFrame = jsql.createDataFrame(points, VectorIndexerSuite.FeatureData.class); Normalizer normalizer = new Normalizer() .setInputCol("features") .setOutputCol("normFeatures"); diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaPCASuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaPCASuite.java index 5cf43fec6f..e8f329f9cf 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaPCASuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaPCASuite.java @@ -18,11 +18,11 @@ package org.apache.spark.ml.feature; import java.io.Serializable; +import java.util.Arrays; import java.util.List; import scala.Tuple2; -import com.google.common.collect.Lists; import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -78,7 +78,7 @@ public class JavaPCASuite implements Serializable { @Test public void testPCA() { - List<Vector> points = Lists.newArrayList( + List<Vector> points = Arrays.asList( Vectors.sparse(5, new int[]{1, 3}, new double[]{1.0, 7.0}), Vectors.dense(2.0, 0.0, 3.0, 4.0, 5.0), Vectors.dense(4.0, 0.0, 0.0, 6.0, 7.0) diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaPolynomialExpansionSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaPolynomialExpansionSuite.java index 5e8211c2c5..834fedbb59 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaPolynomialExpansionSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaPolynomialExpansionSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -59,7 +60,7 @@ public class JavaPolynomialExpansionSuite { .setOutputCol("polyFeatures") .setDegree(3); - JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList( + JavaRDD<Row> data = jsc.parallelize(Arrays.asList( RowFactory.create( Vectors.dense(-2.0, 2.3), Vectors.dense(-2.0, 4.0, -8.0, 2.3, -4.6, 9.2, 5.29, -10.58, 12.17) diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaStandardScalerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaStandardScalerSuite.java index 74eb2733f0..ed74363f59 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaStandardScalerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaStandardScalerSuite.java @@ -17,9 +17,9 @@ package org.apache.spark.ml.feature; +import java.util.Arrays; import java.util.List; -import com.google.common.collect.Lists; import org.junit.After; import org.junit.Before; import org.junit.Test; @@ -48,7 +48,7 @@ public class JavaStandardScalerSuite { @Test public void standardScaler() { // The tests are to check Java compatibility. - List<VectorIndexerSuite.FeatureData> points = Lists.newArrayList( + List<VectorIndexerSuite.FeatureData> points = Arrays.asList( new VectorIndexerSuite.FeatureData(Vectors.dense(0.0, -2.0)), new VectorIndexerSuite.FeatureData(Vectors.dense(1.0, 3.0)), new VectorIndexerSuite.FeatureData(Vectors.dense(1.0, 4.0)) diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaTokenizerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaTokenizerSuite.java index 3806f65002..02309ce632 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaTokenizerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaTokenizerSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -54,7 +55,8 @@ public class JavaTokenizerSuite { .setGaps(true) .setMinTokenLength(3); - JavaRDD<TokenizerTestData> rdd = jsc.parallelize(Lists.newArrayList( + + JavaRDD<TokenizerTestData> rdd = jsc.parallelize(Arrays.asList( new TokenizerTestData("Test of tok.", new String[] {"Test", "tok."}), new TokenizerTestData("Te,st. punct", new String[] {"Te,st.", "punct"}) )); diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorIndexerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorIndexerSuite.java index c7ae5468b9..bfcca62fa1 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorIndexerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorIndexerSuite.java @@ -18,6 +18,7 @@ package org.apache.spark.ml.feature; import java.io.Serializable; +import java.util.Arrays; import java.util.List; import java.util.Map; @@ -26,8 +27,6 @@ import org.junit.Assert; import org.junit.Before; import org.junit.Test; -import com.google.common.collect.Lists; - import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.ml.feature.VectorIndexerSuite.FeatureData; import org.apache.spark.mllib.linalg.Vectors; @@ -52,7 +51,7 @@ public class JavaVectorIndexerSuite implements Serializable { @Test public void vectorIndexerAPI() { // The tests are to check Java compatibility. - List<FeatureData> points = Lists.newArrayList( + List<FeatureData> points = Arrays.asList( new FeatureData(Vectors.dense(0.0, -2.0)), new FeatureData(Vectors.dense(1.0, 3.0)), new FeatureData(Vectors.dense(1.0, 4.0)) diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorSlicerSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorSlicerSuite.java index 56988b9fb2..f953361427 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorSlicerSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaVectorSlicerSuite.java @@ -17,7 +17,7 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; import org.junit.After; import org.junit.Assert; @@ -63,7 +63,7 @@ public class JavaVectorSlicerSuite { }; AttributeGroup group = new AttributeGroup("userFeatures", attrs); - JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList( + JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList( RowFactory.create(Vectors.sparse(3, new int[]{0, 1}, new double[]{-2.0, 2.3})), RowFactory.create(Vectors.dense(-2.0, 2.3, 0.0)) )); diff --git a/mllib/src/test/java/org/apache/spark/ml/feature/JavaWord2VecSuite.java b/mllib/src/test/java/org/apache/spark/ml/feature/JavaWord2VecSuite.java index 39c70157f8..70f5ad9432 100644 --- a/mllib/src/test/java/org/apache/spark/ml/feature/JavaWord2VecSuite.java +++ b/mllib/src/test/java/org/apache/spark/ml/feature/JavaWord2VecSuite.java @@ -17,7 +17,8 @@ package org.apache.spark.ml.feature; -import com.google.common.collect.Lists; +import java.util.Arrays; + import org.junit.After; import org.junit.Assert; import org.junit.Before; @@ -50,10 +51,10 @@ public class JavaWord2VecSuite { @Test public void testJavaWord2Vec() { - JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList( - RowFactory.create(Lists.newArrayList("Hi I heard about Spark".split(" "))), - RowFactory.create(Lists.newArrayList("I wish Java could use case classes".split(" "))), - RowFactory.create(Lists.newArrayList("Logistic regression models are neat".split(" "))) + JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList( + RowFactory.create(Arrays.asList("Hi I heard about Spark".split(" "))), + RowFactory.create(Arrays.asList("I wish Java could use case classes".split(" "))), + RowFactory.create(Arrays.asList("Logistic regression models are neat".split(" "))) )); StructType schema = new StructType(new StructField[]{ new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty()) -- GitLab