From 0e84fee76b529089fb52f15151202e9a7b847ed5 Mon Sep 17 00:00:00 2001 From: Reynold Xin <reynoldx@gmail.com> Date: Sat, 17 Aug 2013 21:13:41 -0700 Subject: [PATCH] Removed the mapSideCombine option in partitionBy. --- .../main/scala/spark/PairRDDFunctions.scala | 28 ++++--------------- .../scala/spark/api/java/JavaPairRDD.scala | 6 +--- 2 files changed, 6 insertions(+), 28 deletions(-) diff --git a/core/src/main/scala/spark/PairRDDFunctions.scala b/core/src/main/scala/spark/PairRDDFunctions.scala index 6b0cc2fbf1..fa9df3a97e 100644 --- a/core/src/main/scala/spark/PairRDDFunctions.scala +++ b/core/src/main/scala/spark/PairRDDFunctions.scala @@ -233,31 +233,13 @@ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( } /** - * Return a copy of the RDD partitioned using the specified partitioner. If `mapSideCombine` - * is true, Spark will group values of the same key together on the map side before the - * repartitioning, to only send each key over the network once. If a large number of - * duplicated keys are expected, and the size of the keys are large, `mapSideCombine` should - * be set to true. + * Return a copy of the RDD partitioned using the specified partitioner. */ - def partitionBy(partitioner: Partitioner, mapSideCombine: Boolean = false): RDD[(K, V)] = { - if (getKeyClass().isArray) { - if (mapSideCombine) { - throw new SparkException("Cannot use map-side combining with array keys.") - } - if (partitioner.isInstanceOf[HashPartitioner]) { - throw new SparkException("Default partitioner cannot partition array keys.") - } - } - if (mapSideCombine) { - def createCombiner(v: V) = ArrayBuffer(v) - def mergeValue(buf: ArrayBuffer[V], v: V) = buf += v - def mergeCombiners(b1: ArrayBuffer[V], b2: ArrayBuffer[V]) = b1 ++= b2 - val bufs = combineByKey[ArrayBuffer[V]]( - createCombiner _, mergeValue _, mergeCombiners _, partitioner) - bufs.flatMapValues(buf => buf) - } else { - new ShuffledRDD[K, V](self, partitioner) + def partitionBy(partitioner: Partitioner): RDD[(K, V)] = { + if (getKeyClass().isArray && partitioner.isInstanceOf[HashPartitioner]) { + throw new SparkException("Default partitioner cannot partition array keys.") } + new ShuffledRDD[K, V](self, partitioner) } /** diff --git a/core/src/main/scala/spark/api/java/JavaPairRDD.scala b/core/src/main/scala/spark/api/java/JavaPairRDD.scala index ff12e8b76c..c2995b836a 100644 --- a/core/src/main/scala/spark/api/java/JavaPairRDD.scala +++ b/core/src/main/scala/spark/api/java/JavaPairRDD.scala @@ -253,11 +253,7 @@ class JavaPairRDD[K, V](val rdd: RDD[(K, V)])(implicit val kManifest: ClassManif fromRDD(rdd.subtract(other, p)) /** - * Return a copy of the RDD partitioned using the specified partitioner. If `mapSideCombine` - * is true, Spark will group values of the same key together on the map side before the - * repartitioning, to only send each key over the network once. If a large number of - * duplicated keys are expected, and the size of the keys are large, `mapSideCombine` should - * be set to true. + * Return a copy of the RDD partitioned using the specified partitioner. */ def partitionBy(partitioner: Partitioner): JavaPairRDD[K, V] = fromRDD(rdd.partitionBy(partitioner)) -- GitLab