diff --git a/python/pyspark/mllib/_common.py b/python/pyspark/mllib/_common.py
index e6f0953810ed74a1c9e7e73668147952687580cc..802a27a8da14d362e954e7bf4ee94134c3805ac0 100644
--- a/python/pyspark/mllib/_common.py
+++ b/python/pyspark/mllib/_common.py
@@ -56,7 +56,8 @@ except:
 #
 # Sparse double vector format:
 #
-# [1-byte 2] [4-byte length] [4-byte nonzeros] [nonzeros*4 bytes of indices] [nonzeros*8 bytes of values]
+# [1-byte 2] [4-byte length] [4-byte nonzeros] [nonzeros*4 bytes of indices] \
+# [nonzeros*8 bytes of values]
 #
 # Double matrix format:
 #
@@ -110,18 +111,18 @@ def _serialize_double_vector(v):
         return _serialize_sparse_vector(v)
     else:
         raise TypeError("_serialize_double_vector called on a %s; "
-                "wanted ndarray or SparseVector" % type(v))
+                        "wanted ndarray or SparseVector" % type(v))
 
 
 def _serialize_dense_vector(v):
     """Serialize a dense vector given as a NumPy array."""
     if v.ndim != 1:
         raise TypeError("_serialize_double_vector called on a %ddarray; "
-                "wanted a 1darray" % v.ndim)
+                        "wanted a 1darray" % v.ndim)
     if v.dtype != float64:
         if numpy.issubdtype(v.dtype, numpy.complex):
             raise TypeError("_serialize_double_vector called on an ndarray of %s; "
-                    "wanted ndarray of float64" % v.dtype)
+                            "wanted ndarray of float64" % v.dtype)
         v = v.astype(float64)
     length = v.shape[0]
     ba = bytearray(5 + 8 * length)
@@ -158,10 +159,10 @@ def _deserialize_double_vector(ba):
     """
     if type(ba) != bytearray:
         raise TypeError("_deserialize_double_vector called on a %s; "
-                "wanted bytearray" % type(ba))
+                        "wanted bytearray" % type(ba))
     if len(ba) < 5:
         raise TypeError("_deserialize_double_vector called on a %d-byte array, "
-                "which is too short" % len(ba))
+                        "which is too short" % len(ba))
     if ba[0] == DENSE_VECTOR_MAGIC:
         return _deserialize_dense_vector(ba)
     elif ba[0] == SPARSE_VECTOR_MAGIC:
@@ -175,7 +176,7 @@ def _deserialize_dense_vector(ba):
     """Deserialize a dense vector into a numpy array."""
     if len(ba) < 5:
         raise TypeError("_deserialize_dense_vector called on a %d-byte array, "
-                "which is too short" % len(ba))
+                        "which is too short" % len(ba))
     length = ndarray(shape=[1], buffer=ba, offset=1, dtype=int32)[0]
     if len(ba) != 8 * length + 5:
         raise TypeError("_deserialize_dense_vector called on bytearray "
@@ -187,7 +188,7 @@ def _deserialize_sparse_vector(ba):
     """Deserialize a sparse vector into a MLlib SparseVector object."""
     if len(ba) < 9:
         raise TypeError("_deserialize_sparse_vector called on a %d-byte array, "
-                "which is too short" % len(ba))
+                        "which is too short" % len(ba))
     header = ndarray(shape=[2], buffer=ba, offset=1, dtype=int32)
     size = header[0]
     nonzeros = header[1]
@@ -205,7 +206,7 @@ def _serialize_double_matrix(m):
         if m.dtype != float64:
             if numpy.issubdtype(m.dtype, numpy.complex):
                 raise TypeError("_serialize_double_matrix called on an ndarray of %s; "
-                        "wanted ndarray of float64" % m.dtype)
+                                "wanted ndarray of float64" % m.dtype)
             m = m.astype(float64)
         rows = m.shape[0]
         cols = m.shape[1]
@@ -225,10 +226,10 @@ def _deserialize_double_matrix(ba):
     """Deserialize a double matrix from a mutually understood format."""
     if type(ba) != bytearray:
         raise TypeError("_deserialize_double_matrix called on a %s; "
-                "wanted bytearray" % type(ba))
+                        "wanted bytearray" % type(ba))
     if len(ba) < 9:
         raise TypeError("_deserialize_double_matrix called on a %d-byte array, "
-                "which is too short" % len(ba))
+                        "which is too short" % len(ba))
     if ba[0] != DENSE_MATRIX_MAGIC:
         raise TypeError("_deserialize_double_matrix called on bytearray "
                         "with wrong magic")
@@ -267,7 +268,7 @@ def _copyto(array, buffer, offset, shape, dtype):
 def _get_unmangled_rdd(data, serializer):
     dataBytes = data.map(serializer)
     dataBytes._bypass_serializer = True
-    dataBytes.cache() # TODO: users should unpersist() this later!
+    dataBytes.cache()  # TODO: users should unpersist() this later!
     return dataBytes
 
 
@@ -293,14 +294,14 @@ def _linear_predictor_typecheck(x, coeffs):
     if type(x) == ndarray:
         if x.ndim == 1:
             if x.shape != coeffs.shape:
-                raise RuntimeError("Got array of %d elements; wanted %d"
-                        % (numpy.shape(x)[0], coeffs.shape[0]))
+                raise RuntimeError("Got array of %d elements; wanted %d" % (
+                    numpy.shape(x)[0], coeffs.shape[0]))
         else:
             raise RuntimeError("Bulk predict not yet supported.")
     elif type(x) == SparseVector:
         if x.size != coeffs.shape[0]:
-           raise RuntimeError("Got sparse vector of size %d; wanted %d"
-                   % (x.size, coeffs.shape[0]))
+            raise RuntimeError("Got sparse vector of size %d; wanted %d" % (
+                x.size, coeffs.shape[0]))
     elif (type(x) == RDD):
         raise RuntimeError("Bulk predict not yet supported.")
     else:
@@ -315,7 +316,7 @@ def _get_initial_weights(initial_weights, data):
         if type(initial_weights) == ndarray:
             if initial_weights.ndim != 1:
                 raise TypeError("At least one data element has "
-                        + initial_weights.ndim + " dimensions, which is not 1")
+                                + initial_weights.ndim + " dimensions, which is not 1")
             initial_weights = numpy.zeros([initial_weights.shape[0]])
         elif type(initial_weights) == SparseVector:
             initial_weights = numpy.zeros([initial_weights.size])
@@ -333,10 +334,10 @@ def _regression_train_wrapper(sc, train_func, klass, data, initial_weights):
         raise RuntimeError("JVM call result had unexpected length")
     elif type(ans[0]) != bytearray:
         raise RuntimeError("JVM call result had first element of type "
-                + type(ans[0]).__name__ + " which is not bytearray")
+                           + type(ans[0]).__name__ + " which is not bytearray")
     elif type(ans[1]) != float:
         raise RuntimeError("JVM call result had second element of type "
-                + type(ans[0]).__name__ + " which is not float")
+                           + type(ans[0]).__name__ + " which is not float")
     return klass(_deserialize_double_vector(ans[0]), ans[1])
 
 
@@ -450,8 +451,7 @@ def _test():
     import doctest
     globs = globals().copy()
     globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
-    (failure_count, test_count) = doctest.testmod(globs=globs,
-            optionflags=doctest.ELLIPSIS)
+    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
     globs['sc'].stop()
     if failure_count:
         exit(-1)
diff --git a/python/pyspark/mllib/classification.py b/python/pyspark/mllib/classification.py
index 6772e4337ef3996814637cddf7152e9db2e3da4f..1c0c536c4fb3d5090902faf4ba80522c3ae0fb9d 100644
--- a/python/pyspark/mllib/classification.py
+++ b/python/pyspark/mllib/classification.py
@@ -29,6 +29,7 @@ from pyspark.mllib.linalg import SparseVector
 from pyspark.mllib.regression import LabeledPoint, LinearModel
 from math import exp, log
 
+
 class LogisticRegressionModel(LinearModel):
     """A linear binary classification model derived from logistic regression.
 
@@ -68,14 +69,14 @@ class LogisticRegressionModel(LinearModel):
 
 class LogisticRegressionWithSGD(object):
     @classmethod
-    def train(cls, data, iterations=100, step=1.0,
-              miniBatchFraction=1.0, initialWeights=None):
+    def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0, initialWeights=None):
         """Train a logistic regression model on the given data."""
         sc = data.context
-        return _regression_train_wrapper(sc, lambda d, i:
-                sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(d._jrdd,
-                        iterations, step, miniBatchFraction, i),
-                LogisticRegressionModel, data, initialWeights)
+        train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(
+            d._jrdd, iterations, step, miniBatchFraction, i)
+        return _regression_train_wrapper(sc, train_func, LogisticRegressionModel, data,
+                                         initialWeights)
+
 
 class SVMModel(LinearModel):
     """A support vector machine.
@@ -106,16 +107,17 @@ class SVMModel(LinearModel):
         margin = _dot(x, self._coeff) + self._intercept
         return 1 if margin >= 0 else 0
 
+
 class SVMWithSGD(object):
     @classmethod
     def train(cls, data, iterations=100, step=1.0, regParam=1.0,
               miniBatchFraction=1.0, initialWeights=None):
         """Train a support vector machine on the given data."""
         sc = data.context
-        return _regression_train_wrapper(sc, lambda d, i:
-                sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(d._jrdd,
-                        iterations, step, regParam, miniBatchFraction, i),
-                SVMModel, data, initialWeights)
+        train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(
+            d._jrdd, iterations, step, regParam, miniBatchFraction, i)
+        return _regression_train_wrapper(sc, train_func, SVMModel, data, initialWeights)
+
 
 class NaiveBayesModel(object):
     """
@@ -156,6 +158,7 @@ class NaiveBayesModel(object):
         """Return the most likely class for a data vector x"""
         return self.labels[numpy.argmax(self.pi + _dot(x, self.theta.transpose()))]
 
+
 class NaiveBayes(object):
     @classmethod
     def train(cls, data, lambda_=1.0):
@@ -186,8 +189,7 @@ def _test():
     import doctest
     globs = globals().copy()
     globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
-    (failure_count, test_count) = doctest.testmod(globs=globs,
-            optionflags=doctest.ELLIPSIS)
+    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
     globs['sc'].stop()
     if failure_count:
         exit(-1)
diff --git a/python/pyspark/mllib/clustering.py b/python/pyspark/mllib/clustering.py
index f65088c9170e0c218e7c599b1674c1027bb6fb5a..b380e8f6c8725f0aaadf74fd2f82e93b6aad444a 100644
--- a/python/pyspark/mllib/clustering.py
+++ b/python/pyspark/mllib/clustering.py
@@ -30,7 +30,8 @@ class KMeansModel(object):
     """A clustering model derived from the k-means method.
 
     >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
-    >>> model = KMeans.train(sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
+    >>> model = KMeans.train(
+    ...     sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
     >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0]))
     True
     >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0]))
@@ -76,18 +77,17 @@ class KMeansModel(object):
 
 class KMeans(object):
     @classmethod
-    def train(cls, data, k, maxIterations=100, runs=1,
-            initializationMode="k-means||"):
+    def train(cls, data, k, maxIterations=100, runs=1, initializationMode="k-means||"):
         """Train a k-means clustering model."""
         sc = data.context
         dataBytes = _get_unmangled_double_vector_rdd(data)
-        ans = sc._jvm.PythonMLLibAPI().trainKMeansModel(dataBytes._jrdd,
-                k, maxIterations, runs, initializationMode)
+        ans = sc._jvm.PythonMLLibAPI().trainKMeansModel(
+            dataBytes._jrdd, k, maxIterations, runs, initializationMode)
         if len(ans) != 1:
             raise RuntimeError("JVM call result had unexpected length")
         elif type(ans[0]) != bytearray:
             raise RuntimeError("JVM call result had first element of type "
-                    + type(ans[0]) + " which is not bytearray")
+                               + type(ans[0]) + " which is not bytearray")
         matrix = _deserialize_double_matrix(ans[0])
         return KMeansModel([row for row in matrix])
 
@@ -96,8 +96,7 @@ def _test():
     import doctest
     globs = globals().copy()
     globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
-    (failure_count, test_count) = doctest.testmod(globs=globs,
-            optionflags=doctest.ELLIPSIS)
+    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
     globs['sc'].stop()
     if failure_count:
         exit(-1)
diff --git a/python/pyspark/mllib/linalg.py b/python/pyspark/mllib/linalg.py
index 7511ca7573ddb3a32ee26c3f85be6dcb7a5e5d38..276684272068bc9968e8f0bb56cdb1b557188724 100644
--- a/python/pyspark/mllib/linalg.py
+++ b/python/pyspark/mllib/linalg.py
@@ -54,7 +54,7 @@ class SparseVector(object):
         if len(args) == 1:
             pairs = args[0]
             if type(pairs) == dict:
-               pairs = pairs.items()
+                pairs = pairs.items()
             pairs = sorted(pairs)
             self.indices = array([p[0] for p in pairs], dtype=int32)
             self.values = array([p[1] for p in pairs], dtype=float64)
@@ -88,7 +88,7 @@ class SparseVector(object):
                     result += self.values[i] * other[self.indices[i]]
                 return result
             elif other.ndim == 2:
-                results = [self.dot(other[:,i]) for i in xrange(other.shape[1])]
+                results = [self.dot(other[:, i]) for i in xrange(other.shape[1])]
                 return array(results)
             else:
                 raise Exception("Cannot call dot with %d-dimensional array" % other.ndim)
@@ -135,7 +135,7 @@ class SparseVector(object):
                 return result
             else:
                 raise Exception("Cannot call squared_distance with %d-dimensional array" %
-                        other.ndim)
+                                other.ndim)
         else:
             result = 0.0
             i, j = 0, 0
@@ -184,15 +184,14 @@ class SparseVector(object):
         """
 
         return (isinstance(other, self.__class__)
-            and other.size == self.size
-            and array_equal(other.indices, self.indices)
-            and array_equal(other.values, self.values))
+                and other.size == self.size
+                and array_equal(other.indices, self.indices)
+                and array_equal(other.values, self.values))
 
     def __ne__(self, other):
         return not self.__eq__(other)
 
 
-
 class Vectors(object):
     """
     Factory methods for working with vectors. Note that dense vectors
diff --git a/python/pyspark/mllib/recommendation.py b/python/pyspark/mllib/recommendation.py
index f4a83f0209e27ce9f5137490c23a7f610ce9a5d5..6c385042ffa5f7433b449ee611eae5fe06048e4d 100644
--- a/python/pyspark/mllib/recommendation.py
+++ b/python/pyspark/mllib/recommendation.py
@@ -24,6 +24,7 @@ from pyspark.mllib._common import \
     _serialize_tuple, RatingDeserializer
 from pyspark.rdd import RDD
 
+
 class MatrixFactorizationModel(object):
     """A matrix factorisation model trained by regularized alternating
     least-squares.
@@ -55,32 +56,34 @@ class MatrixFactorizationModel(object):
         return RDD(self._java_model.predict(usersProductsJRDD._jrdd),
                    self._context, RatingDeserializer())
 
+
 class ALS(object):
     @classmethod
     def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1):
         sc = ratings.context
         ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
-        mod = sc._jvm.PythonMLLibAPI().trainALSModel(ratingBytes._jrdd,
-                rank, iterations, lambda_, blocks)
+        mod = sc._jvm.PythonMLLibAPI().trainALSModel(
+            ratingBytes._jrdd, rank, iterations, lambda_, blocks)
         return MatrixFactorizationModel(sc, mod)
 
     @classmethod
     def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01):
         sc = ratings.context
         ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
-        mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(ratingBytes._jrdd,
-                rank, iterations, lambda_, blocks, alpha)
+        mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(
+            ratingBytes._jrdd, rank, iterations, lambda_, blocks, alpha)
         return MatrixFactorizationModel(sc, mod)
 
+
 def _test():
     import doctest
     globs = globals().copy()
     globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
-    (failure_count, test_count) = doctest.testmod(globs=globs,
-            optionflags=doctest.ELLIPSIS)
+    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
     globs['sc'].stop()
     if failure_count:
         exit(-1)
 
+
 if __name__ == "__main__":
     _test()
diff --git a/python/pyspark/mllib/regression.py b/python/pyspark/mllib/regression.py
index 266b31d3fab0e64ead3e69d698cafa3ab39f4969..bc7de6d2e89583857cbb15e8175fd39b1b8a2617 100644
--- a/python/pyspark/mllib/regression.py
+++ b/python/pyspark/mllib/regression.py
@@ -113,10 +113,9 @@ class LinearRegressionWithSGD(object):
               miniBatchFraction=1.0, initialWeights=None):
         """Train a linear regression model on the given data."""
         sc = data.context
-        return _regression_train_wrapper(sc, lambda d, i:
-                sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD(
-                        d._jrdd, iterations, step, miniBatchFraction, i),
-                LinearRegressionModel, data, initialWeights)
+        train_f = lambda d, i: sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD(
+            d._jrdd, iterations, step, miniBatchFraction, i)
+        return _regression_train_wrapper(sc, train_f, LinearRegressionModel, data, initialWeights)
 
 
 class LassoModel(LinearRegressionModelBase):
@@ -157,10 +156,9 @@ class LassoWithSGD(object):
               miniBatchFraction=1.0, initialWeights=None):
         """Train a Lasso regression model on the given data."""
         sc = data.context
-        return _regression_train_wrapper(sc, lambda d, i:
-                sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD(d._jrdd,
-                        iterations, step, regParam, miniBatchFraction, i),
-                LassoModel, data, initialWeights)
+        train_f = lambda d, i: sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD(
+            d._jrdd, iterations, step, regParam, miniBatchFraction, i)
+        return _regression_train_wrapper(sc, train_f, LassoModel, data, initialWeights)
 
 
 class RidgeRegressionModel(LinearRegressionModelBase):
@@ -201,18 +199,16 @@ class RidgeRegressionWithSGD(object):
               miniBatchFraction=1.0, initialWeights=None):
         """Train a ridge regression model on the given data."""
         sc = data.context
-        return _regression_train_wrapper(sc, lambda d, i:
-                sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD(d._jrdd,
-                        iterations, step, regParam, miniBatchFraction, i),
-                RidgeRegressionModel, data, initialWeights)
+        train_func = lambda d, i: sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD(
+            d._jrdd, iterations, step, regParam, miniBatchFraction, i)
+        return _regression_train_wrapper(sc, train_func, RidgeRegressionModel, data, initialWeights)
 
 
 def _test():
     import doctest
     globs = globals().copy()
     globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
-    (failure_count, test_count) = doctest.testmod(globs=globs,
-            optionflags=doctest.ELLIPSIS)
+    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
     globs['sc'].stop()
     if failure_count:
         exit(-1)
diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py
index 1ee96bb4af37b8def7f8402f248c8c6132eabe71..37ccf1d59074379504627358c1b979568c8d5134 100644
--- a/python/pyspark/mllib/tests.py
+++ b/python/pyspark/mllib/tests.py
@@ -23,7 +23,7 @@ from numpy import array, array_equal
 import unittest
 
 from pyspark.mllib._common import _convert_vector, _serialize_double_vector, \
-        _deserialize_double_vector, _dot, _squared_distance
+    _deserialize_double_vector, _dot, _squared_distance
 from pyspark.mllib.linalg import SparseVector
 from pyspark.mllib.regression import LabeledPoint
 from pyspark.tests import PySparkTestCase
@@ -46,12 +46,9 @@ class VectorTests(unittest.TestCase):
         self.assertTrue(sv is _convert_vector(sv))
         self.assertTrue(dv is _convert_vector(dv))
         self.assertTrue(array_equal(dv, _convert_vector(lst)))
-        self.assertEquals(sv,
-                _deserialize_double_vector(_serialize_double_vector(sv)))
-        self.assertTrue(array_equal(dv,
-                _deserialize_double_vector(_serialize_double_vector(dv))))
-        self.assertTrue(array_equal(dv,
-                _deserialize_double_vector(_serialize_double_vector(lst))))
+        self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(sv)))
+        self.assertTrue(array_equal(dv, _deserialize_double_vector(_serialize_double_vector(dv))))
+        self.assertTrue(array_equal(dv, _deserialize_double_vector(_serialize_double_vector(lst))))
 
     def test_dot(self):
         sv = SparseVector(4, {1: 1, 3: 2})
@@ -132,7 +129,7 @@ class ListTests(PySparkTestCase):
 
     def test_regression(self):
         from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
-                RidgeRegressionWithSGD
+            RidgeRegressionWithSGD
         data = [
             LabeledPoint(-1.0, [0, -1]),
             LabeledPoint(1.0, [0, 1]),
@@ -179,14 +176,10 @@ class SciPyTests(PySparkTestCase):
         self.assertEquals(sv, _convert_vector(lil.tocoo()))
         self.assertEquals(sv, _convert_vector(lil.tocsr()))
         self.assertEquals(sv, _convert_vector(lil.todok()))
-        self.assertEquals(sv,
-                _deserialize_double_vector(_serialize_double_vector(lil)))
-        self.assertEquals(sv,
-                _deserialize_double_vector(_serialize_double_vector(lil.tocsc())))
-        self.assertEquals(sv,
-                _deserialize_double_vector(_serialize_double_vector(lil.tocsr())))
-        self.assertEquals(sv,
-                _deserialize_double_vector(_serialize_double_vector(lil.todok())))
+        self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil)))
+        self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.tocsc())))
+        self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.tocsr())))
+        self.assertEquals(sv, _deserialize_double_vector(_serialize_double_vector(lil.todok())))
 
     def test_dot(self):
         from scipy.sparse import lil_matrix
@@ -265,7 +258,7 @@ class SciPyTests(PySparkTestCase):
 
     def test_regression(self):
         from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
-                RidgeRegressionWithSGD
+            RidgeRegressionWithSGD
         data = [
             LabeledPoint(-1.0, self.scipy_matrix(2, {1: -1.0})),
             LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
diff --git a/python/pyspark/mllib/util.py b/python/pyspark/mllib/util.py
index 50d0cdd087625d91df2556d9b71c856c2c800805..0e5f4520b94028ce379e6e2857ff3032f443907c 100644
--- a/python/pyspark/mllib/util.py
+++ b/python/pyspark/mllib/util.py
@@ -21,6 +21,7 @@ from pyspark.mllib.linalg import Vectors, SparseVector
 from pyspark.mllib.regression import LabeledPoint
 from pyspark.mllib._common import _convert_vector
 
+
 class MLUtils:
     """
     Helper methods to load, save and pre-process data used in MLlib.
@@ -44,7 +45,6 @@ class MLUtils:
             values[i] = float(value)
         return label, indices, values
 
-
     @staticmethod
     def _convert_labeled_point_to_libsvm(p):
         """Converts a LabeledPoint to a string in LIBSVM format."""
@@ -62,7 +62,6 @@ class MLUtils:
                             " but got " % type(v))
         return " ".join(items)
 
-
     @staticmethod
     def loadLibSVMFile(sc, path, multiclass=False, numFeatures=-1, minPartitions=None):
         """
@@ -135,7 +134,6 @@ class MLUtils:
             numFeatures = parsed.map(lambda x: 0 if x[1].size == 0 else x[1][-1]).reduce(max) + 1
         return parsed.map(lambda x: LabeledPoint(x[0], Vectors.sparse(numFeatures, x[1], x[2])))
 
-
     @staticmethod
     def saveAsLibSVMFile(data, dir):
         """