From 07508bd01d16f3331be167ff92770d19c8b1f46a Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh <viirya@gmail.com> Date: Tue, 11 Oct 2016 11:43:24 -0700 Subject: [PATCH] [SPARK-17817][PYSPARK] PySpark RDD Repartitioning Results in Highly Skewed Partition Sizes ## What changes were proposed in this pull request? Quoted from JIRA description: Calling repartition on a PySpark RDD to increase the number of partitions results in highly skewed partition sizes, with most having 0 rows. The repartition method should evenly spread out the rows across the partitions, and this behavior is correctly seen on the Scala side. Please reference the following code for a reproducible example of this issue: num_partitions = 20000 a = sc.parallelize(range(int(1e6)), 2) # start with 2 even partitions l = a.repartition(num_partitions).glom().map(len).collect() # get length of each partition min(l), max(l), sum(l)/len(l), len(l) # skewed! In Scala's `repartition` code, we will distribute elements evenly across output partitions. However, the RDD from Python is serialized as a single binary data, so the distribution fails. We need to convert the RDD in Python to java object before repartitioning. ## How was this patch tested? Jenkins tests. Author: Liang-Chi Hsieh <viirya@gmail.com> Closes #15389 from viirya/pyspark-rdd-repartition. --- python/pyspark/rdd.py | 13 ++++++++++--- python/pyspark/tests.py | 10 ++++++++++ 2 files changed, 20 insertions(+), 3 deletions(-) diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index ed81eb16df..0e2ae19ca3 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -2017,8 +2017,7 @@ class RDD(object): >>> len(rdd.repartition(10).glom().collect()) 10 """ - jrdd = self._jrdd.repartition(numPartitions) - return RDD(jrdd, self.ctx, self._jrdd_deserializer) + return self.coalesce(numPartitions, shuffle=True) def coalesce(self, numPartitions, shuffle=False): """ @@ -2029,7 +2028,15 @@ class RDD(object): >>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() [[1, 2, 3, 4, 5]] """ - jrdd = self._jrdd.coalesce(numPartitions, shuffle) + if shuffle: + # In Scala's repartition code, we will distribute elements evenly across output + # partitions. However, the RDD from Python is serialized as a single binary data, + # so the distribution fails and produces highly skewed partitions. We need to + # convert it to a RDD of java object before repartitioning. + data_java_rdd = self._to_java_object_rdd().coalesce(numPartitions, shuffle) + jrdd = self.ctx._jvm.SerDeUtil.javaToPython(data_java_rdd) + else: + jrdd = self._jrdd.coalesce(numPartitions, shuffle) return RDD(jrdd, self.ctx, self._jrdd_deserializer) def zip(self, other): diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index b0756911bf..3e0bd16d85 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -914,6 +914,16 @@ class RDDTests(ReusedPySparkTestCase): self.assertEqual(partitions[0], [(0, 5), (0, 8), (2, 6)]) self.assertEqual(partitions[1], [(1, 3), (3, 8), (3, 8)]) + def test_repartition_no_skewed(self): + num_partitions = 20 + a = self.sc.parallelize(range(int(1000)), 2) + l = a.repartition(num_partitions).glom().map(len).collect() + zeros = len([x for x in l if x == 0]) + self.assertTrue(zeros == 0) + l = a.coalesce(num_partitions, True).glom().map(len).collect() + zeros = len([x for x in l if x == 0]) + self.assertTrue(zeros == 0) + def test_distinct(self): rdd = self.sc.parallelize((1, 2, 3)*10, 10) self.assertEqual(rdd.getNumPartitions(), 10) -- GitLab