Skip to content
Snippets Groups Projects
user avatar
Davies Liu authored
Currently, we serialize the data between JVM and Python case by case manually, this cannot scale to support so many APIs in MLlib.

This patch will try to address this problem by serialize the data using pickle protocol, using Pyrolite library to serialize/deserialize in JVM. Pickle protocol can be easily extended to support customized class.

All the modules are refactored to use this protocol.

Known issues: There will be some performance regression (both CPU and memory, the serialized data increased)

Author: Davies Liu <davies.liu@gmail.com>

Closes #2378 from davies/pickle_mllib and squashes the following commits:

dffbba2 [Davies Liu] Merge branch 'master' of github.com:apache/spark into pickle_mllib
810f97f [Davies Liu] fix equal of matrix
032cd62 [Davies Liu] add more type check and conversion for user_product
bd738ab [Davies Liu] address comments
e431377 [Davies Liu] fix cache of rdd, refactor
19d0967 [Davies Liu] refactor Picklers
2511e76 [Davies Liu] cleanup
1fccf1a [Davies Liu] address comments
a2cc855 [Davies Liu] fix tests
9ceff73 [Davies Liu] test size of serialized Rating
44e0551 [Davies Liu] fix cache
a379a81 [Davies Liu] fix pickle array in python2.7
df625c7 [Davies Liu] Merge commit '154d141' into pickle_mllib
154d141 [Davies Liu] fix autobatchedpickler
44736d7 [Davies Liu] speed up pickling array in Python 2.7
e1d1bfc [Davies Liu] refactor
708dc02 [Davies Liu] fix tests
9dcfb63 [Davies Liu] fix style
88034f0 [Davies Liu] rafactor, address comments
46a501e [Davies Liu] choose batch size automatically
df19464 [Davies Liu] memorize the module and class name during pickleing
f3506c5 [Davies Liu] Merge branch 'master' into pickle_mllib
722dd96 [Davies Liu] cleanup _common.py
0ee1525 [Davies Liu] remove outdated tests
b02e34f [Davies Liu] remove _common.py
84c721d [Davies Liu] Merge branch 'master' into pickle_mllib
4d7963e [Davies Liu] remove muanlly serialization
6d26b03 [Davies Liu] fix tests
c383544 [Davies Liu] classification
f2a0856 [Davies Liu] mllib/regression
d9f691f [Davies Liu] mllib/util
cccb8b1 [Davies Liu] mllib/tree
8fe166a [Davies Liu] Merge branch 'pickle' into pickle_mllib
aa2287e [Davies Liu] random
f1544c4 [Davies Liu] refactor clustering
52d1350 [Davies Liu] use new protocol in mllib/stat
b30ef35 [Davies Liu] use pickle to serialize data for mllib/recommendation
f44f771 [Davies Liu] enable tests about array
3908f5c [Davies Liu] Merge branch 'master' into pickle
c77c87b [Davies Liu] cleanup debugging code
60e4e2f [Davies Liu] support unpickle array.array for Python 2.6
fce5e251
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.