Skip to content
Snippets Groups Projects
user avatar
Matei Zaharia authored
This PR adds a SparseVector class in PySpark and updates all the regression, classification and clustering algorithms and models to support sparse data, similar to MLlib. I chose to add this class because SciPy is quite difficult to install in many environments (more so than NumPy), but I plan to add support for SciPy sparse vectors later too, and make the methods work transparently on objects of either type.

On the Scala side, we keep Python sparse vectors sparse and pass them to MLlib. We always return dense vectors from our models.

Some to-do items left:
- [x] Support SciPy's scipy.sparse matrix objects when SciPy is available. We can easily add a function to convert these to our own SparseVector.
- [x] MLlib currently uses a vector with one extra column on the left to represent what we call LabeledPoint in Scala. Do we really want this? It may get annoying once you deal with sparse data since you must add/subtract 1 to each feature index when training. We can remove this API in 1.0 and use tuples for labeling.
- [x] Explain how to use these in the Python MLlib docs.

CC @mengxr, @joshrosen

Author: Matei Zaharia <matei@databricks.com>

Closes #341 from mateiz/py-ml-update and squashes the following commits:

d52e763 [Matei Zaharia] Remove no-longer-needed slice code and handle review comments
ea5a25a [Matei Zaharia] Fix remaining uses of copyto() after merge
b9f97a3 [Matei Zaharia] Fix test
1e1bd0f [Matei Zaharia] Add MLlib logistic regression example in Python
88bc01f [Matei Zaharia] Clean up inheritance of LinearModel in Python, and expose its parametrs
37ab747 [Matei Zaharia] Fix some examples and docs due to changes in MLlib API
da0f27e [Matei Zaharia] Added a MLlib K-means example and updated docs to discuss sparse data
c48e85a [Matei Zaharia] Added some tests for passing lists as input, and added mllib/tests.py to run-tests script.
a07ba10 [Matei Zaharia] Fix some typos and calculation of initial weights
74eefe7 [Matei Zaharia] Added LabeledPoint class in Python
889dde8 [Matei Zaharia] Support scipy.sparse matrices in all our algorithms and models
ab244d1 [Matei Zaharia] Allow SparseVectors to be initialized using a dict
a5d6426 [Matei Zaharia] Add linalg.py to run-tests script
0e7a3d8 [Matei Zaharia] Keep vectors sparse in Java when reading LabeledPoints
eaee759 [Matei Zaharia] Update regression, classification and clustering models for sparse data
2abbb44 [Matei Zaharia] Further work to get linear models working with sparse data
154f45d [Matei Zaharia] Update docs, name some magic values
881fef7 [Matei Zaharia] Added a sparse vector in Python and made Java-Python format more compact
63ca581d
History

Apache Spark

Lightning-Fast Cluster Computing - http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project webpage at http://spark.apache.org/documentation.html. This README file only contains basic setup instructions.

Building

Spark requires Scala 2.10. The project is built using Simple Build Tool (SBT), which can be obtained here. If SBT is installed we will use the system version of sbt otherwise we will attempt to download it automatically. To build Spark and its example programs, run:

./sbt/sbt assembly

Once you've built Spark, the easiest way to start using it is the shell:

./bin/spark-shell

Or, for the Python API, the Python shell (./bin/pyspark).

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> <params>. For example:

./bin/run-example org.apache.spark.examples.SparkLR local[2]

will run the Logistic Regression example locally on 2 CPUs.

Each of the example programs prints usage help if no params are given.

All of the Spark samples take a <master> parameter that is the cluster URL to connect to. This can be a mesos:// or spark:// URL, or "local" to run locally with one thread, or "local[N]" to run locally with N threads.

Running tests

Testing first requires Building Spark. Once Spark is built, tests can be run using:

./sbt/sbt test

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs. You can change the version by setting the SPARK_HADOOP_VERSION environment when building Spark.

For Apache Hadoop versions 1.x, Cloudera CDH MRv1, and other Hadoop versions without YARN, use:

# Apache Hadoop 1.2.1
$ SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v1
$ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly

For Apache Hadoop 2.2.X, 2.1.X, 2.0.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set SPARK_YARN=true:

# Apache Hadoop 2.0.5-alpha
$ SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly

# Cloudera CDH 4.2.0 with MapReduce v2
$ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly

# Apache Hadoop 2.2.X and newer
$ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly

When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're using Hadoop 1.2.1 and build your application using SBT, add this entry to libraryDependencies:

"org.apache.hadoop" % "hadoop-client" % "1.2.1"

If your project is built with Maven, add this to your POM file's <dependencies> section:

<dependency>
  <groupId>org.apache.hadoop</groupId>
  <artifactId>hadoop-client</artifactId>
  <version>1.2.1</version>
</dependency>

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.

Contributing to Spark

Contributions via GitHub pull requests are gladly accepted from their original author. Along with any pull requests, please state that the contribution is your original work and that you license the work to the project under the project's open source license. Whether or not you state this explicitly, by submitting any copyrighted material via pull request, email, or other means you agree to license the material under the project's open source license and warrant that you have the legal authority to do so.