Skip to content
Snippets Groups Projects
user avatar
Davies Liu authored
This PR update PySpark to support Python 3 (tested with 3.4).

Known issue: unpickle array from Pyrolite is broken in Python 3, those tests are skipped.

TODO: ec2/spark-ec2.py is not fully tested with python3.

Author: Davies Liu <davies@databricks.com>
Author: twneale <twneale@gmail.com>
Author: Josh Rosen <joshrosen@databricks.com>

Closes #5173 from davies/python3 and squashes the following commits:

d7d6323 [Davies Liu] fix tests
6c52a98 [Davies Liu] fix mllib test
99e334f [Davies Liu] update timeout
b716610 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
cafd5ec [Davies Liu] adddress comments from @mengxr
bf225d7 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
179fc8d [Davies Liu] tuning flaky tests
8c8b957 [Davies Liu] fix ResourceWarning in Python 3
5c57c95 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
4006829 [Davies Liu] fix test
2fc0066 [Davies Liu] add python3 path
71535e9 [Davies Liu] fix xrange and divide
5a55ab4 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
125f12c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ed498c8 [Davies Liu] fix compatibility with python 3
820e649 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
e8ce8c9 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ad7c374 [Davies Liu] fix mllib test and warning
ef1fc2f [Davies Liu] fix tests
4eee14a [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
20112ff [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
59bb492 [Davies Liu] fix tests
1da268c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ca0fdd3 [Davies Liu] fix code style
9563a15 [Davies Liu] add imap back for python 2
0b1ec04 [Davies Liu] make python examples work with Python 3
d2fd566 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
a716d34 [Davies Liu] test with python 3.4
f1700e8 [Davies Liu] fix test in python3
671b1db [Davies Liu] fix test in python3
692ff47 [Davies Liu] fix flaky test
7b9699f [Davies Liu] invalidate import cache for Python 3.3+
9c58497 [Davies Liu] fix kill worker
309bfbf [Davies Liu] keep compatibility
5707476 [Davies Liu] cleanup, fix hash of string in 3.3+
8662d5b [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
f53e1f0 [Davies Liu] fix tests
70b6b73 [Davies Liu] compile ec2/spark_ec2.py in python 3
a39167e [Davies Liu] support customize class in __main__
814c77b [Davies Liu] run unittests with python 3
7f4476e [Davies Liu] mllib tests passed
d737924 [Davies Liu] pass ml tests
375ea17 [Davies Liu] SQL tests pass
6cc42a9 [Davies Liu] rename
431a8de [Davies Liu] streaming tests pass
78901a7 [Davies Liu] fix hash of serializer in Python 3
24b2f2e [Davies Liu] pass all RDD tests
35f48fe [Davies Liu] run future again
1eebac2 [Davies Liu] fix conflict in ec2/spark_ec2.py
6e3c21d [Davies Liu] make cloudpickle work with Python3
2fb2db3 [Josh Rosen] Guard more changes behind sys.version; still doesn't run
1aa5e8f [twneale] Turned out `pickle.DictionaryType is dict` == True, so swapped it out
7354371 [twneale] buffer --> memoryview  I'm not super sure if this a valid change, but the 2.7 docs recommend using memoryview over buffer where possible, so hoping it'll work.
b69ccdf [twneale] Uses the pure python pickle._Pickler instead of c-extension _pickle.Pickler. It appears pyspark 2.7 uses the pure python pickler as well, so this shouldn't degrade pickling performance (?).
f40d925 [twneale] xrange --> range
e104215 [twneale] Replaces 2.7 types.InstsanceType with 3.4 `object`....could be horribly wrong depending on how types.InstanceType is used elsewhere in the package--see http://bugs.python.org/issue8206
79de9d0 [twneale] Replaces python2.7 `file` with 3.4 _io.TextIOWrapper
2adb42d [Josh Rosen] Fix up some import differences between Python 2 and 3
854be27 [Josh Rosen] Run `futurize` on Python code:
7c5b4ce [Josh Rosen] Remove Python 3 check in shell.py.
04e44b37
History

Apache Spark

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, and Python, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page and project wiki. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at "Building Spark".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn-cluster" or "yarn-client" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run all automated tests.

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions. See also "Third Party Hadoop Distributions" for guidance on building a Spark application that works with a particular distribution.

Configuration

Please refer to the Configuration guide in the online documentation for an overview on how to configure Spark.