FA20 CS425 - Distributed System Lab Report 2

Yichi Zhang, Ali Zaidi, and Bo-Rong Chen
System Design

Overview. We implemented a distributed file system in this MP. In order to maintain a
consistent file list across the system, we use leader election and a consistent hashing
ring to elect a leader and make decisions regarding file operations, including GET, PUT,
and DELETE. The election algorithm we used here is ring election; we implemented a
consistent hash ring to map files onto their respective nodes. Once a node is elected as
a leader, it will be the only node in the system to modify the global file list (i.e., a map of
sdfsfilename to all nodes that hold its replicas). Since we are using the all-to-all heart-
beating protocol, we will know that once the leader has failed, we can initiate a new round
of election. All file operations are ignored until the next leader is elected.

For a PUT operation, an initiating node A sends a query to the leader, who will reply
with a replica destination B for A to transfer the file to based on the hash ring. After the
first transfer is completed, leader will update the global file list to include A and B and ask
both A and B to transfer the file to other two replica destinations C and D in parallel, in
order to speed up the PUT operation. Once these file transfers are completed, the leader
will update the global file list to include nodes A, B, C and D.

For a GET operation, a request will be sent from initiating node A to the leader, which

follows the similar design as PUT operation but with a reversed sending path. TCP is used
for leader election and file operations, and our UDP implementation from MP1 is used for
heart-beating and failure detection.
Failure Detection and Re-replication. In case of node failure we first check if it is the
leader. If so, we will initiate another round of election and proceed with the following steps:
the leader should check which files are stored on that machine and re-replicate them using
the same method as GET operation. Furthermore, if the new leader is elected after the
previous leader fails, it will check if the number of replicas is greater than 4, if not, it will
re-replicate the file up to 4 replicas. Moreover, the leader also checks if the failed node is
the sender of a GET or PUT operation. If so, the leader will execute the requests again.

Results

The curves of both GET and PUT are linear in terms of the file sizes. PUT will take two
passes: the first pass is for replicating one file; and the second pass is for these two nodes
to replicate the file into other two nodes, whereas GET will only send the file from one node
containing the requested file to the target node. This takes only one pass. Therefore, the
PUT latency is nearly double compared to the GET latency, as shown in Figure 1. In
addition, the design of GET is the same as what the leader does for file re-replications
after a failure, and it takes half of the latency to do PUT of the same file in our system.

1

Yichi Zhang | Ali Zaidi | Bo-Rong Chen CS425 FA20 Group 24

GET Latency vs. File Size T
y PUT Latency vs. File Size

200

250

150 300

250

100 200

GET Latency (s)
PUT Latency (s)

130

50 100
50
200 400 600 800 1000 200 400 600 800 1000
File Size (MB) File Size (MB)
(a) GET Latency vs. File Size (b) PUT Latency vs. File Size

Figure 1: Latency in terns of different File Sizes

Wikicorpus PUT Time vs. # of Machines

800
€00

400

Wikicorpus PUT Time(s)

200

02 4 6 8 10

of Machines Excluding Leader

Figure 2: Store English Wikipedia corpus

Moreover, we have tested our system under transferring large files, as shown in Fig-
ure 2. The latency of putting the entire English Wikipedia corpus (i.e., 1.3 GBytes) to our
system containing 4 and 8 machines are about 852.14 seconds and 803.64 seconds, re-
spectively. This shows that our PUT operation is independent of how many nodes are in
our system.

Our results show that the throughput of PUT is roughly 12 Mbps.

