import os #height and width to which images are resized before feeding into networks image_size = (224, 224) # Token to be used if object or attribute variable is unknown unknown_token = 'UNK' # Data paths data_absolute_path = '/home/tanmay/Data/VisualGenome' image_dir = os.path.join(data_absolute_path, 'images') object_labels_json = os.path.join( data_absolute_path, 'restructured/object_labels.json') attribute_labels_json = os.path.join( data_absolute_path, 'restructured/attribute_labels.json') regions_json = os.path.join( data_absolute_path, 'restructured/region_with_labels.json') mean_image_filename = os.path.join( data_absolute_path, 'restructured/mean_image.jpg') # Regions data partition # First 70% meant to be used for training # Next 10% is set aside for validation # Last 20% is to be used for testing num_total_regions = 1951768 num_train_regions = 1366238 # First 70% num_val_regions = 195176 # Next 10% num_test_regions = num_total_regions \ - num_train_regions \ - num_val_regions