diff --git a/answer_classifier_cached_features/inference.py b/answer_classifier_cached_features/inference.py
index ff11c428ca3e1c9b322f09b7d6be7c9e6410d9cf..101114202a49effbb20246c7941f5bf8efd050f4 100644
--- a/answer_classifier_cached_features/inference.py
+++ b/answer_classifier_cached_features/inference.py
@@ -37,14 +37,50 @@ class AnswerInference():
                     reuse_vars = False
                 else:
                     reuse_vars = True
+                
+                num_regions = self.object_feat[j].get_shape()[0].value
+
+                q_feat = tf.reshape(
+                    self.question_vert_concat[j],
+                    [1, -1])
+        
+                q_feat = tf.expand_dims(q_feat,0)
+        
+                q_feat = tf.tile(
+                    q_feat,
+                    [num_regions, self.num_answers, 1])
+
+                a_feat = tf.expand_dims(
+                    self.answers_vert_concat[j],
+                    0)
+
+                a_feat = tf.tile(
+                    a_feat,
+                    [num_regions, 1, 1])
+
+                obj_atr_qa_feat = tf.concat(
+                    2,
+                    [self.obj_atr_qa_elementwise_prod[j], q_feat, a_feat])
+
+                obj_atr_qa_feat = tf.expand_dims(
+                    obj_atr_qa_feat,
+                    0)
+
+                print obj_atr_qa_feat.get_shape()
 
                 self.per_region_answer_scores[j] = layers.conv2d(
-                    tf.expand_dims(
-                        self.obj_atr_qa_elementwise_prod[j],
-                        0),
+                    obj_atr_qa_feat,
+                    1,
+                    2500,
+                    'per_region_ans_score_conv_1',
+                    func = tf.nn.relu,
+                    reuse_vars = reuse_vars)
+
+                self.per_region_answer_scores[j] = layers.conv2d(
+                    self.per_region_answer_scores[j],
                     1,
                     1,
-                    'per_region_ans_score_conv',
+                    'per_region_ans_score_conv_2',
                     func = None,
                     reuse_vars = reuse_vars)
                 
diff --git a/constants_crunchy.py b/constants_crunchy.py
index 75a80b86660f5c8e6dc83b1b0ce40218ba235f70..6ae09552f7140415b5b9b7c92edfa61e6bd73424 100644
--- a/constants_crunchy.py
+++ b/constants_crunchy.py
@@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name):
     if not os.path.exists(dir_name):
         os.mkdir(dir_name)
         
-experiment_name = 'QA_classifier_wordvec_xform' #'QA_joint_pretrain_genome_split'
+experiment_name = 'QA_classifier_joint_pretrain_wordvec_xform' #'QA_joint_pretrain_genome_split'
 
 # Global output directory (all subexperiments will be saved here)
 global_output_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA'
@@ -195,7 +195,7 @@ answer_obj_atr_loss_wt = 0.1
 answer_regularization_coeff = 1e-5
 answer_queue_size = 500
 answer_embedding_dim = 600
-answer_lr = 1e-4
+answer_lr = 1e-3
 answer_log_every_n_iter = 500
 answer_output_dir = os.path.join(
     global_experiment_dir,
@@ -220,7 +220,7 @@ answer_fine_tune_from = answer_model + '-' + str(answer_fine_tune_from_iter)
 
 # Answer eval params
 answer_eval_on = 'val'
-answer_model_to_eval = answer_model + '-42000'
+answer_model_to_eval = answer_model + '-20000'
 
 vqa_results_dir = os.path.join(
     answer_output_dir,
diff --git a/visual_util/visualize_relevance.py b/visual_util/visualize_relevance.py
index 17b947eb8fca36cddc376ddb9132f114ee3933cc..be332af7d5f8d15591fc8231e71874cace060194 100644
--- a/visual_util/visualize_relevance.py
+++ b/visual_util/visualize_relevance.py
@@ -200,7 +200,7 @@ if __name__=='__main__':
         'mscoco_val2014_annotations_with_parsed_questions.json')
 
     exp_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA/' + \
-              'QA_joint_pretrain_genome_split/'
+              'QA_classifier_wordvec_xform/'
 
     eval_data_json = os.path.join(
         exp_dir,
@@ -219,14 +219,4 @@ if __name__=='__main__':
         data_type)
 
     rel_vis.write_html()
-#    key = '5289770'
-    # keys = rel_vis.eval_data.keys()
-
-    # for key in keys:
-    #     question = rel_vis.anno_data[key]['question']
-    #     answer = rel_vis.anno_data[key]['multiple_choice_answer']
-    #     print 'Q: ' + question
-    #     print 'GT A: ' + answer
-    #     _, rel, ans, score = rel_vis.create_relevance_map(key,mode='pred')
-    #     print 'Pred A: ' + ans
-    #     imgplot = image_io.imshow2(rel)
+