diff --git a/answer_classifier_cached_features/select_best_model.py b/answer_classifier_cached_features/select_best_model.py index 8f77e06be9b886f8e9c01d9a8ea76e6cafe805f6..ee6b2706151d02216b663c8368504dcebd641c72 100644 --- a/answer_classifier_cached_features/select_best_model.py +++ b/answer_classifier_cached_features/select_best_model.py @@ -245,6 +245,7 @@ def eval_model(model_to_eval, results_json): 0, 0, 0, + constants.answer_obj_atr_loss_wt, resnet_feat_dim=constants.resnet_feat_dim, training=False) diff --git a/constants_crunchy.py b/constants_crunchy.py index 70b07fc70b8bdbb7a5fc3aa1677970b7c8c8192f..9402eb2b6f3c846ecfa06ac9359d986c99189564 100644 --- a/constants_crunchy.py +++ b/constants_crunchy.py @@ -159,13 +159,13 @@ num_test_questions = 0 # Answer classifier training params answer_batch_size = 50 -answer_num_epochs = 4 +answer_num_epochs = 6 answer_offset = 0 answer_obj_atr_loss_wt = 0.1 answer_regularization_coeff = 1e-5 answer_queue_size = 500 answer_embedding_dim = 600 -answer_lr = 1e-3 +answer_lr = 1e-4 answer_log_every_n_iter = 500 answer_output_dir = os.path.join( global_experiment_dir, @@ -185,12 +185,12 @@ answer_model = os.path.join( num_regions_with_labels = 100 # Answer fine tune params -answer_fine_tune_from_iter = 17000 +answer_fine_tune_from_iter = 19500 answer_fine_tune_from = answer_model + '-' + str(answer_fine_tune_from_iter) # Answer eval params answer_eval_on = 'val' -answer_model_to_eval = answer_model + '-13000' +answer_model_to_eval = answer_model + '-49500' answer_eval_data_json = os.path.join( answer_output_dir,