diff --git a/constants_crunchy.py b/constants_crunchy.py index 70b07fc70b8bdbb7a5fc3aa1677970b7c8c8192f..4276e0c8dce857a3581c27ae4c35eadbc29c67ec 100644 --- a/constants_crunchy.py +++ b/constants_crunchy.py @@ -8,7 +8,7 @@ def mkdir_if_not_exists(dir_name): experiment_name = 'QA_explicit_dot_joint_training_pretrained_same_lr' #experiment_name = 'object_attribute_classifier_large_images' # Global output directory (all subexperiments will be saved here) -global_output_dir = '/home/tanmay/Code/GenVQA/Exp_Results/VQA' +global_output_dir = '/data/tanmay/GenVQA_Exp_Results' global_experiment_dir = os.path.join( global_output_dir, diff --git a/constants_vision_gpu_2.py b/constants_vision_gpu_2.py index c3315a41d9eb27708eb2fb99d4ffe8ed5b2cb368..1768b59c93fd4deee45c37c987de5fcd14b6f7d7 100644 --- a/constants_vision_gpu_2.py +++ b/constants_vision_gpu_2.py @@ -8,7 +8,7 @@ def mkdir_if_not_exists(dir_name): experiment_name = 'QA_explicit_dot_pretrained_same_lr' #experiment_name = 'object_attribute_classifier_large_images' # Global output directory (all subexperiments will be saved here) -global_output_dir = '/home/nfs/tgupta6/projects/GenVQA/Exp_Results/VQA' +global_output_dir = '/data/tanmay/GenVQA_Exp_Results' global_experiment_dir = os.path.join( global_output_dir, @@ -164,7 +164,7 @@ answer_obj_atr_loss_wt = 0.0 answer_regularization_coeff = 1e-5 answer_queue_size = 500 answer_embedding_dim = 600 -answer_lr = 1e-3 +answer_lr = 1e-4 answer_log_every_n_iter = 500 answer_output_dir = os.path.join( global_experiment_dir, @@ -184,7 +184,7 @@ answer_model = os.path.join( num_regions_with_labels = 100 # Answer fine tune params -answer_fine_tune_from_iter = 62500 +answer_fine_tune_from_iter = 19500 answer_fine_tune_from = answer_model + '-' + str(answer_fine_tune_from_iter) # Answer eval params diff --git a/data/cropped_regions_cached_features.py b/data/cropped_regions_cached_features.py index 2de2ea6ce756ba661d3d908d4cef50bed9f41339..4a47043970cb80c59bd5a1cc806c545f9f78c265 100644 --- a/data/cropped_regions_cached_features.py +++ b/data/cropped_regions_cached_features.py @@ -87,20 +87,22 @@ class data(): print 'Error in thread {}: {}'.format( threading.current_thread().name, str(e)) + def get_parallel(self, samples): batch_list = [None]*len(samples) worker_ids = range(len(samples)) workers = [] for count, sample in enumerate(samples): - worker = threading.Thread( - target = self.get_single, - args = (sample, batch_list, worker_ids[count])) - worker.setDaemon(True) - worker.start() - workers.append(worker) + self.get_single(sample, batch_list, worker_ids[count]) + # worker = threading.Thread( + # target = self.get_single, + # args = (sample, batch_list, worker_ids[count])) + # worker.setDaemon(True) + # worker.start() + # workers.append(worker) - for worker in workers: - worker.join() + # for worker in workers: + # worker.join() batch_size = len(samples) batch = dict()