diff --git a/answer_classifier_cached_features/inference.py b/answer_classifier_cached_features/inference.py index 8ddbe60a48f596bdb038f481eccfa3b273b9f1c2..5c115c6596381266d49c242e32c155e817a2d767 100644 --- a/answer_classifier_cached_features/inference.py +++ b/answer_classifier_cached_features/inference.py @@ -97,7 +97,7 @@ class AnswerInference(): self.per_region_answer_scores[j] = tf.nn.relu( self.batch_norm( self.per_region_answer_scores[j], - is_training)) + self.is_training)) self.per_region_answer_scores[j] = layers.conv2d( self.per_region_answer_scores[j], diff --git a/answer_classifier_cached_features/train.py b/answer_classifier_cached_features/train.py index 14f7f4e015a7cfe676840881b0692ebabe39e65d..e5d6fd3f3159a02ec4b1f4ebbda2c2abc64b608f 100644 --- a/answer_classifier_cached_features/train.py +++ b/answer_classifier_cached_features/train.py @@ -108,7 +108,7 @@ class graph_creator(): self.num_neg_answers + 1, self.space_dim, self.plh['keep_prob'], - training) + self.training) self.add_losses() self.add_accuracy_computation() @@ -367,8 +367,7 @@ class graph_creator(): attribute_loss_summary = tf.scalar_summary( "loss_attribute", self.attribute_loss) - # self.object_loss = 0.0 - # self.attribute_loss = 0.0 + else: self.object_loss = 0.0 self.attribute_loss = 0.0