diff --git a/constants_vision_gpu_2.py b/constants_vision_gpu_2.py index 37c3763e92598239c66f881adf688357e5a895b9..c3315a41d9eb27708eb2fb99d4ffe8ed5b2cb368 100644 --- a/constants_vision_gpu_2.py +++ b/constants_vision_gpu_2.py @@ -5,7 +5,7 @@ def mkdir_if_not_exists(dir_name): if not os.path.exists(dir_name): os.mkdir(dir_name) -experiment_name = 'QA_explicit_dot_pretrained' +experiment_name = 'QA_explicit_dot_pretrained_same_lr' #experiment_name = 'object_attribute_classifier_large_images' # Global output directory (all subexperiments will be saved here) global_output_dir = '/home/nfs/tgupta6/projects/GenVQA/Exp_Results/VQA' @@ -89,7 +89,7 @@ pretrained_vocab_word_vectors_npy = os.path.join( # Object Attribute Classifier Training Params region_batch_size = 200 region_num_samples = num_train_regions -region_num_epochs = 10 +region_num_epochs = 4 region_offset = 0 region_queue_size = 400 region_regularization_coeff = 1e-4 @@ -160,10 +160,11 @@ num_test_questions = 0 answer_batch_size = 50 answer_num_epochs = 10 answer_offset = 0 +answer_obj_atr_loss_wt = 0.0 answer_regularization_coeff = 1e-5 answer_queue_size = 500 answer_embedding_dim = 600 -answer_lr = 1e-4 +answer_lr = 1e-3 answer_log_every_n_iter = 500 answer_output_dir = os.path.join( global_experiment_dir, @@ -198,4 +199,10 @@ answer_eval_results_json = os.path.join( answer_output_dir, 'eval_' + answer_eval_on + '_results.json') - +# Select best model +models_dir = answer_output_dir +start_model = 1000 +step_size = 2000 +model_accuracies_txt = os.path.join( + answer_output_dir, + 'model_accuracies.txt')