diff --git a/MultiplicativeAlgorithm/Visualizations.ipynb b/MultiplicativeAlgorithm/Visualizations.ipynb index e99967cbc343cb9ff2f6a4d5605eabb89945a248..159ea8334119ddb0123381e232740eee0b18dfb2 100644 --- a/MultiplicativeAlgorithm/Visualizations.ipynb +++ b/MultiplicativeAlgorithm/Visualizations.ipynb @@ -1158,7 +1158,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.5" } }, "nbformat": 4, diff --git a/MultiplicativeAlgorithm/Visualizations.py b/MultiplicativeAlgorithm/Visualizations.py index fbbfca6a735a6743d294eb11bc104a7c14806b87..cc5f52883115ca78c149e2c5ea1d4f510df42c8c 100644 --- a/MultiplicativeAlgorithm/Visualizations.py +++ b/MultiplicativeAlgorithm/Visualizations.py @@ -68,10 +68,11 @@ def Heatmap(W1, W2): Ro = np.corrcoef(W1.T,W2.T)[len(W1.T):,:len(W2.T)] plt.imshow(Ro, cmap='hot', interpolation='nearest') plt.colorbar() - plt.title('Heatmap for comparing two runs of W') - plt.xlabel('Columns of W1') - plt.ylabel('Columns of W2') - plt.savefig('Heatmap') + plt.rc('text', usetex=True) + plt.title(r'Heatmap for comparing two runs of $W$') + plt.xlabel(r'Columns of $W_1$') + plt.ylabel(r'Columns of $W_2$') + plt.savefig('Heatmap.pdf', bbox_inches="tight") plt.show() return None diff --git a/MultiplicativeAlgorithm/cSNMF.ipynb b/MultiplicativeAlgorithm/cSNMF.ipynb index a21e801378929dd3891b09145d99ac488e19f594..1ee731164cb8e7b1c0478d24a84edb1b0c3b6da3 100644 --- a/MultiplicativeAlgorithm/cSNMF.ipynb +++ b/MultiplicativeAlgorithm/cSNMF.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,9 +24,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "OSError", + "evalue": "D_trips.txt not found.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mOSError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m<ipython-input-2-3d816c69a48c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m## Read Full-Link data and prep for running cSNMF.\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mconfig\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mTRIPS\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mD\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloadtxt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'D_trips.txt'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4\u001b[0m \u001b[0mlogger\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Full_link data for trips has been read'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\numpy\\lib\\npyio.py\u001b[0m in \u001b[0;36mloadtxt\u001b[1;34m(fname, dtype, comments, delimiter, converters, skiprows, usecols, unpack, ndmin, encoding)\u001b[0m\n\u001b[0;32m 915\u001b[0m \u001b[0mfname\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 916\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0m_is_string_like\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 917\u001b[1;33m \u001b[0mfh\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_datasource\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfname\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'rt'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 918\u001b[0m \u001b[0mfencoding\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfh\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'encoding'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'latin1'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 919\u001b[0m \u001b[0mfh\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0miter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfh\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\numpy\\lib\\_datasource.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(path, mode, destpath, encoding, newline)\u001b[0m\n\u001b[0;32m 258\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 259\u001b[0m \u001b[0mds\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mDataSource\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdestpath\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 260\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mds\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mencoding\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mencoding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnewline\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mnewline\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 261\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 262\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\numpy\\lib\\_datasource.py\u001b[0m in \u001b[0;36mopen\u001b[1;34m(self, path, mode, encoding, newline)\u001b[0m\n\u001b[0;32m 614\u001b[0m encoding=encoding, newline=newline)\n\u001b[0;32m 615\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 616\u001b[1;33m \u001b[1;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"%s not found.\"\u001b[0m \u001b[1;33m%\u001b[0m \u001b[0mpath\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 617\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 618\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mOSError\u001b[0m: D_trips.txt not found." + ] + } + ], "source": [ "## Read Full-Link data and prep for running cSNMF.\n", "if config.TRIPS:\n", @@ -79,6 +94,250 @@ "np.savetxt('W_trips.txt', W)\n", "np.savetxt('H_trips.txt', H)" ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "W1 = np.loadtxt('W_(seed_W = 100,seed_H = 210).txt')\n", + "W2 = np.loadtxt('W_trips.txt')\n", + "H2= np.loadtxt('H_trips.txt')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n", + "Possible Permutation! ith column of W1 can be mapped to jth column of W2 appears as j is in possible_maps[i]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABjsAAAYUCAYAAAC4uropAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XGQZdldH/bvYRvBSpHoWRk0y86C3ANlIKYSz0gQXCZGxYwNMQ5FmBVFUU5VbLTj2CnsxM5MbbBTTnBFzKZcICUYdmQXMTFxaWccF2VsAzsydkJBpN2ZGKtKjgtvB9hFbCzvbkeUJCJ16+SPd9/M257Xr1/3vHPvuzufT9Wr1/3evb/fuffdft19fu+cU2qtAQAAAAAAGKsvGLoBAAAAAAAA90KxAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYNcUOAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBR2xi6AQAAAAAArJdSykaSk0O3Y4ReqrXuDt2I+5FiBwAAAAAA+51M8sLQjRihR5O8OHQj7kemsQIAAAAAAEbNyA4AAAAAAA70kY98JA8//PDQzVhbv/3bv51v+IZvGLoZ9z3FDgAAAAAADvTwww/n1KlTQzcDFjKNFQAAAAAAMGqKHQAAAAAAwKgpdgAAAAAAAKNmzQ4AAAAAABbY7W7M59ysAyM7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFHbGLoBAAAAAACss93uxnzOzTowsgMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYtY2hGwAAAAAAwDrbS7I7dCPW2N7QDSBGdgAAAAAAACOn2AEAAAAAAIyaYgcAAAAAADBqih0AAAAAAMCoKXYAAAAAAACjtjF0AwAAAAAAWGe73Y35nJt1YGQHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo6bYAQAAAAAAjJoFygEAAAAAWGAvFuFeZG/oBhAjOwAAAAAAgJFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBR2xi6AQAAAAAArLPd7sZ8zs06MLIDAAAAAAAYNcUOAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGLWNoRsAAAAAAMA620uyO3Qj1tje0A0gRnYAAAAAAAAjp9gBAAAAAACMmmIHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo7YxdAMAAAAAAFhnu92N+ZybdWBkBwAAAAAAMGqKHQAAAAAAwKgpdgAAAAAAAKOm2AEAAAAAAIyaYgcAAAAAADBqG0M3AAAAAACAdbbX3ZjPuVkHRnYAAAAAAACjptgBAAAAAACMmmIHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo7YxdAMAAAAAAFhne0l2h27EGtsbugHEyA4AAAAAAGDkFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYNcUOAAAAAABg1DaGbgAAAAAAAOtst7sxn3OzDozsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFFT7AAAAAAAAEZtY+gGAAAAAACwzvaS7A7diDW2N3QDiJEdAAAAAADAyCl2AAAAAAAAo6bYAQAAAAAAjJpiBwAAAAAAMGqKHQAAAAAAwKhtDN0AAAAAAADW2W53Yz7nZh0Y2QEAAAAAAIyaYgcAAAAAADBqih0AAAAAAMCoKXYAAAAAAACjptgBAAAAAACM2sbQDQAAAAAAYJ3tJdkduhFrbG/oBhAjOwAAAAAAgJFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDULFAOAAAAAMACu7FA+SLOzTowsgMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYtY2hGwAAAAAAwDrb7W7M59ysAyM7AAAAAACAUVPsAIBjKqXU7vb8EfbZnNnvmZbtY1illCullJvda/1q9/XW0O1ivZVSnpp5jzgzdHtgHdzr++m+373zbtfm7PP8gu1fPSDPuaNsDwDAail2AACsUCnlTNexdSnJtLN6s/t6c7CGAYzMqt5Pa607tdaS5Oy+p84nOVFrfWzOPqe7fW7NPHy52/7EAXluJDmR5Gr30I0kZw/aHgCA1VLsAABYrWuZdMJdTzLtLDuRSSfb9pANYxSez6Rz9dZhG8J9YKXvp7XWWzP73aq13qi17hyy23MzX189bPvu+We6+Oe7nAAA9MAC5QAAK1JKeTzJVpKd2U8Kd51fOrw4VK31ySRPDt0OGFrD99NpsWLZkSGzU1U+NLP/IheT3DVaBACAtozsAABum1kv4K75y1nKdIqU5xZuBfcJ7yncg1bvp9ORHcuu+XF65utDCySllAtJnqm1GskHwOvMXpJdtwNve8c/tayMkR0AAKsz7Txb5pO/ABys1fvpK8tu2C2Cfm7moYeW2O1irfX8kVsFAMA9M7IDAACA+8Xt4kkp5bCRGlcyWZR8auH2pZRL3T4AAAxAsQMAAID7xcszXx84UqObjurZvHZ9kAOnvuoKJ++std645xYCAHAsih0AsKZKKZullCullOe7Oe+fL6VcK6WcO2SfS6WUZ/bt91Q3Hce8fR7vtqtJHu8evjB9bOZ27oD9Xj2gva927d2a2We6zc2ZbZ4ppZxZ4lwc6bjmHNv+OK92z91cdE4PU0rZmskxjbP//M2N37Xv5kxbnu/Oz9xPD88cz/Mzj53pzvPzpZR7/kRxl+OZfW262X1i+bD9lj6WfcfT9Bpa1XWwguvw0Ndtf1tXcc4WtGtrpg3Tc3Chi/n4zHOvHvb6H9DGQ99TZrc9qM1dm6bbLHqdp9s8Pue5I1+fR3Hc13iJn/W526zqOpjzc/Bqd56uLDrXR3GUc1/u4f30CGanxVr0+l+stT6Z10579dYF2+8fBQIAQM+s2QEAa6jrzHlm38Nb3e1CKeXJWuvlfftcSLJ/EeCdbp/HkzxeSnms1np93zav5E7nz+a+ffdvd1B7t5Lc3Lf/ZpILXXtPd99/aM4255LcLKWcrbXOfoL2Xo9rf5wrSeZ12J5J8kwp5WKt9eqiGAssc/5m27KVyeu7vyNyq2vjpSWP6Vom5/ieHdKmJDnTncPTswvvrvBYml1D+/Ic6zpY1XXYxVrJ69a9T1zLgnN20CLJXUHgqX0Pn8ndxzj1ziM07SjvKc/NtONcknk/g9+z7+t57xOzHeA3Zh5fyfV5VKv82Vwi15Gvg67QcDN3n5fNTK6DM5mcn3IP7TruuT/S++kxzP4umzuyo8xMR1Vr3Snl9mk4qDh1JsmORckBAIZlZAcA3Lvbn0Q97Jbk1cOCdZ0m00LH9SRna60lyYkkF7vHL8359PJDmXQIXZ7uU2s90e037Uy665O+tdbrtdYT3bbT7W4/NnM7qBN52mn23Exbz+a1nZbXum22Z7Y5vW+bJw6If6zjmuNSt/35bt/zmekUTbLw0/kHqbVuz5y/abwb+87d/s7X5zPp8NtO8liSEzPnbbrtta6DfZ6H9nWmXs3k2tjfeb2UOR2fF2fadLpr47Rdr8zst4pjSdpfQ7OOex2s4jpc5eu2mcn7xHOZFKCm52y243jup8y795hpzqu585o9ljudyle7Y5zeHlu2YUd5T6m17uRO8eKgHOdmtjnoU/3TfbenHc4rvD6PYqU/m0s47nXwRCbnZSfJ+dnXutv/ycwpKi3ruOf+qO+nxzRbkLjr57Usno7qoGmvriR57z22CwDW3K7boTeGptgBAOtn+snqq7XWx6ZFhlrrTveJ87Pd8/unLHq66wh6crYw0e0324nZYpqNV2qt52faeqvWejF3Osumn3o9O7PNdrfNtEPpoM7GVR3X5e583uj2vVFrPZ9Jp97tbZY+4uObFrJu1VpPdx3DO8nt83Y+dzrwrx0wzc30U9vTjv+Ltdar9/Cp4itdzJ0u3tWZNm13bTzfPTf7CetVHMtUy2to1nGvg1Vch6t+3ba7c7bdteVW15Zp+959wH7TotCNrg3T1+x67hQNHl/VFE9L+GB3f1choyvMbGbyGm9nMsJoXrum+8528q/y+lzWql/jZRznOrhdjNnfqd/tf7nWenbOfssa4twv67BprOZNRzVvtEmS26Okru17bwQAYACKHQBw77b3fQL6wFsmnwI/UPcJ161MOnUvztum62i9kWRzdk71JTpaph1a71j6yJZ30KeWPzjz9UGfer09Xde8Dq8VHtfcKarqZDqwaUfkXXP9r9LM65sk7zlou+61nx73onU4bhcH7qFN02mYkkkh4MB4s881OJZm19A+x7oOVvzzdc+vW+egczZty0HnYloYuGvKqn0d3/e6NsKyZkc+7c85/f6ZHNB5313D02vxg91jq74+j2pVr/EyjnsdHPbcsazBuT/MgWtwLJiOarrPvJEdj9XjT4EIAMAKKXYAwHq5PTd9t6Dr3FvudKgepXAx7bxZyaKz+xw0rcjOEbc5aIqQRVZxXLOLB7c4P1PTAtb2Eh2hT3f3B306/8kVfVp8dgqZo3TYrfJYkmGvoal7uQ6WvQ5X9bolB5+Pl6dfHFD8OXD9nSF018/0NTy/7+npe+JzuVPU2r/NtCCyM3Mtrvr6PIpVvsbLOM51MN3n8VUuRt4Z8twfal/hcv95uVL3rYfVmb6er9m+WwPIouQAAGvCAuUAsF6mHU6bWa7z/sBP5XadV+/IZF2DpO2ntJfp2Dvok/FH6nhtdFzPzXy9lXuYq/4Q0+LUMvFvdvebpZTNOSML9i9gf1zThaeP2jm7ymNZNv9KrqEFlr4O7uE6XNXrlhx8zg4bhXIrk+O7a5qifWuO3OvaCEfxdCYjai6k6zzuOujPZNJpvlNKmbZn/7meTr01295VX59HscrXeBnHuQ4uZ1Jg2MydxcJ3MvkZuHaPIxWGPPdHdbs42k1HddAomWm7ZrffSrLZ4wgeAAAOodgBAOtl2pFyudb65MIt5+g6YJ/IcmsX9O3YHdI9HNfCBWtXaFqcWqZjf/Z8zet4fy6rMT3eoxY7Vnksy2o9IuGwhYtXcR2u6nW7F5czOYbHSynPdGt1TIsL06mtrvfc8Xwtk2LH1kyn97SocSOZrNHSdchvllLOzHQyT7ebnfJsiOtzah1e44W64tHvzWQ003Tats1MzuW5UsrlTKZnOs65GPLcL2snk3bOfmDgfLfWyTzTds5ufyULpukCAKB/prECgPUy7VB558Kt5ug+lXozk07MnUwWXH4syeluvZAjF0/WQU/HNdux3bKDdxp7mVE7C9vUoCP6qEWelR3LGjmwnau6DtdwEeNrpZRXSynPJ3k1k9fz1oJO3yYOWCtkOl3V7EiJp2e32bfGx2yMwa7PNXyN56q17nQLqJdMzvWTuVOg2EryoWMuHD6G94bZ45xOR3XQmkDJTNtKKZvddffsWF5rAFiNvSS7bgfe9o5/alkZxQ4AWC/TT7Ueaf707hPn0+k3nqy1nqi1Xq61Xu957viV6vG4Ztc+afmp7GnsZQoLtwtejV/Do7TpuPv1dSz3au518Dr8+ZquqXA+yfVMiqwPZfL+c7HWetf0Vj2ZFiumRY5z+x5P7l63Y1qUubWv43ns1+fKFw5fpNZ6o7umT+fOud3MnVEfRzGGc397wfElp6N6eebrh3LM0ZcAALSl2AEA62XaobpVSjnKVDmzC/QetFjqUTrPeu1oW2CVx7Vo4epp7J1DOrzu1XSKoK19n0h/je7T1NPX/3rD9sy2KaWUS8fYb52OZRnHuQ5W/fM1tHOZHMuNWutjtdbTXQHn7D2u1bDIMudnek2d666brewrYkyn3Mqd12TeFFazscZ2fU4deXTfqnSjbKYFpuO0YwznfnpNbWYyHdVhi4zPFtKu5OC1PQAAGJBiBwCska6TadrJ+oF9iwW/Rinl8ZnnZztuDnKUhbxbrltxFKs8rrnFo1LKU7lzvId1eN2TriN5ekxPLZgi5trM163bNHvNPbHENXeu22/tjmVJx7kOVv3ztQ42jzlF0XEt854ynaJqKwcXMZLueu2uxWnc13SWj/j6nBYBml5PSxTTj7uWz1jO/exaIctMRzV7HjZnim4AAKwRxQ4AWD+P5c7iqc/PFjVKKVullAullJuZfLJ02iF1e5qXUsrNbtqd6ffnuu2X6Wx8trvf6vJullLOlFKe6eY079uqjitJrpRSLk073mb2n07Tst3wU+2zvrW730ryf09f3+5cX+jWTph2dF7saWqX/dfcpe51n77+j3ftmr3m1vVYDnOc62CV1+E6mE4z9KHuNbswczs3e3wrsPR7StfhPL1GplNtzU5hNTUtgMyOxJl3ba3r9Tmb5zXTRHXv9R9K+5FCH+jWarnSveZbM6/N7M/5vGLTMtb13E9NixvbS05HNVscuXjgVgAADGpj6AYAAK9Va90upZzNZG76rXTTZZRS9m96K12nZbfP9Uw+tX4myc0522/n8A7Z65lM0ZEu7+xUHb0vxLrC40omi+9eyaSze16M83ft0UCt9Vb3+k47NA+aDuViT8WXedfcQYWt7cysZbGOx7KEI18HK74O18FTmXSyz65F8hrd8d3KZG2CeQWHZR31PeV6kku5M9XWvGnlpu2ZdpY/PWebtb0+a603SinT6+VKKeWJTK6f6dRd20mu5njrZSzrlS7Xpe42z5PHndZvXc/9jOkaHMsWLqbX6tU1KdoCADCHkR0AsIZqrdvdQrEXM+lwnHa03MqkE+x8N7/+7Fz2j2XSkTvtiNnOpFPwcpLTWWKO8a4T52K3786+fI8t2reVVRxX573d9tcz86neTDr0TvfZgVVrvVVrPZHJMcx2Jm5ncqwn+u4AXHDNbWdyzqZrO9zat9/aHcshjnUdrPA6HFQ3ouUDS25+JskzR1zL5TWO8Z4yO5LgwCJGXlsouTZvu+m2a3p9ns/k+pmOqNrs2nSx+zl8ZsG+92xmIfKrmf/zfn7B+jTL5ljXcz9tw/UjFPJe6fZZi6nOAGAYu26H3hhaqbUO3QYAgCZKKY/nTif0iSXmZed1yHVwRynlWiYjVHYyKWDd2Pf8ZiaLuJ/LZETGdDql+/q8AQDcj0opp5K8kCQvvPA3curU7xm4RevrxRf/TR599Pun3z5aa31xyPbcr4zsAACA+8d0Yer3zPtUe611pxvlczXJ2Zmn3tFL6wAAAI5JsQMAAO4/y6wvMrtI9isHbgUAALAGFDsAAOD+8WR3f6WUcqWUclfRo5Sy2a3TcbN76MZxF6oGAADoy8bQDQAAAPpRa71cSnk+kzVMLiW5VEpJ7iy8/lBeO6Ljaq31Yr+tBAAAODrFDgAAuI9063Fc7RZufyyTKa2mRY7tJM8leSaTQodFyQEASLKXZHfoRqyxvaEbQJJSax26DQAAAAAArJFSyqkkLyTJCy88lVOn3jpwi9bXiy++nEcfvT0g+tFa64tDtud+Zc0OAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGLWNoRsAAAAAAMA62+1uzOfcrAMjOwAAAAAAgFFT7AAAAAAAAEbNNFZrrpTyRUm+vvv2E0n2BmwOAAAAAIzNA0m+tPv6o7XW/2/IxgBtKHasv69P8uzQjQAAAACA14F3Jnlu6EYAq2caKwAAAAAAYNSM7Fh/n5h+8ZGP/G95+OGHmyX6I49+dbPYU7/w37WN/+f/q7bxk+R726fIN35nD0m22qf4vh9pn+MDjeP3cEnlR/9xD0n+ZQ85fqZ9ir/yc23j/9224ZMkH73SQ5J/0EOOHgZ9//qH2+d4Y+P4X/YtjRMkeeGftM/x6De1z/G+X2mf4wcax//hxvGT5Inv7iHJzfYpPvPr7XM8+P72OfI/tQ3/27faxk+Sh0+0z5HaPsVnd9rneENpnyM/0Tb8P7rYNn6SfHsff4f8qfYp/sVL7XN87dsaJ/h04/hJ8id7yPEf9ZDjUvsUffxt+/Y3N07w7sbxk1z9m23ifjLJ++58+4kDN2SB3e7GfM7NOlDsWH+31+h4+OGHc+rUqWaJ3tAs8h2nGv8z9aa24ZMkX9ZDjlOte9+S5Evap/ji9inySOP4fVxTp072kOTf9JDjwfYpWv/t3sdwx9bvg0n6+eHrQR+T6Lb+GT/Zw89FH39Sn+rhmurh11La/RU18ZbG8ZPkVB+/mHr4D+Ez7VPkwbf2kOSL2obvo2/9kQd6SPL59ik+2z5FP8WOxtdtHz8Wp1p34Ce9vE+92j5FTrX++evjj9s+fvn18f9S4/fzpJ+/bU+1fs1b/0OWZLN9isR6uPC6pdhxRKWUC0kuJtnJ5D14J8l7a609fO4KAAAAAADYT7HjCEopV5JcSHK21rrTPXYmyYdKKe+ptV4ftIEAAAAAAHAfUuxYUinlXCazON4udCRJrfVWKeVykmullBOzzwEAAAAAAO31MYPj68VTSXYOmK7q6e6+9VrJAAAAAADAPkZ2LKGUspVkK8nVec/XWndKKduZTHEFAAAAAPA6spdkd+hGrDHr3q8DIzuWc667XzRF1XZye7orAAAAAACgJ4odyzm/xDbTQsiZlg0BAAAAAABeyzRWy9nq7l9esM0r3f3powQupZw6ZJOTR4kHAAAAAAD3G8WO5Wx294umsTquFxrEBAAAAACA+4Zix3IearQtAAAAAMCa24tFuBdxbtaBYsfqbR6+yWs8esjzJ5M8e8y2AAAAAADA655ix3JeyfJFjCNNdVVrfXHR86WUo4QDAAAAAID7zhcM3YCROEoB45XDNwEAAAAAAFZFsWM50wLGotEd07U6WixiDgAAAAAAHECxYznb3f1bF2wzLYRYXwMAAAAAAHpkzY7l3OzuF43s2OrubzRuCwAAAABAj/aS7A7diDW2N3QDiJEdy3q6u3/Hgm22kmzXWk1jBQAAAAAAPVLsWEJXwLie5Ewp5a7RHaWUc92XV3ptGAAAAAAAoNhxBO/JZPHxeQWNK0lu1Vqv9tskAAAAAABAsWNJ3eiOs0nOlVKeKqWcKaWcK6U8k+SVWuvZgZsIAAAAAAD3JQuUH0GtdTvJ6W7aqnOZjPS4XGu9NWzLAAAAAADg/qXYcQy11htJbgzdDgAAAACA9na7G/M5N+ug1FqHbgMLlFJOJXkhSTbTdt6xl+uvNYw+8Wr56qbxT/zLpuEnfqx9ipfe3z7HyVPtc+S/7yHHLzaO/+HG8ZN89Ffb53iofYo88u/3kOTzjeP//sbxk3zyJ9rneMvvbZ8jj/SQow+/1Tj+/9s4fpK8u32KvR6u2wd+sn2O/Gjj+H+kcfwkn+nhd+uD39U+Rz7WPsVeD38Xtv7r+Wu+vXGCJPloDzl+t4ccfdjsIcfHG8f/s43jJ/m5Ht6nvu1c+xx5tn2Kzzb+O+ENX9I2fpJ8qoe/dV5qnyIne8jxpm/qIUnj/y0/++m28ZPkDe9qE/fF300e/ZXb3z5aa32xTabXl9l+yRde+Ks5derEwC1aXy+++GoeffQvTb91jQ3Emh0AAAAAAMCoKXYAAAAAAACjptgBAAAAAACMmmIHAAAAAAAwahtDNwAAAAAAgHW2l2R36Eassb2hG0CM7AAAAAAAAEZOsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGbWPoBgAAAAAAsM52uxvzOTfrwMgOAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQ2hm4AAAAAAADrbLe7MZ9zsw6M7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGbWPoBgAAAAAAsM72kuwO3Yg1tjd0A4iRHQAAAAAAwMgZ2TEiH30iOfUl7eJ/qnx1u+CdE/UX2yZ467vaxk+S/6R9ipN/rX2OfGUPOR7vIcdXNY7fQ2H+6z/ePkd+tYcc2z3k+HDb8M/+RNv4SfLOH2+fI5/rIccnesjxt3vI0fpX38nG8ZPkN9qneOC72+fIP+0hx59vHP964/hJHmx9DEnyph5yfKp9igd+oH2Or3mycYK3NY6fJP/wje1zXPp0+xz/qn2K/LMecvxU4/g/2zh+km/7e+1z9PI3wg+2T/GGxn/b5oHG8ZO86fvb5zh9/o+3T/Jf//32Od7cPkX+YNvwb+jj99LTjeJ+tlFcYK0Y2QEAAAAAAIyaYgcAAAAAADBqih0AAAAAAMCoWbMDAAAAAIAFdrsb8zk368DIDgAAAAAAYNQUOwAAAAAAgFEzjRUAAAAAAKyxUsqFJBeT7CTZ7O7fW2u9dY9xz3VxN2cevlJrvXEvcYeg2AEAAAAAAGuqlHIlyYUkZ2utO91jZ5J8qJTynlrr9WPGfSrJ87XWx2Ye20pyrZTyXK314gqa3xvTWAEAAAAAwBrqRl5cSvLYtNCRJN2IjsuZFCY2D9p/QdwLSXZqrU/OPl5r3U7yrUne3W0zGoodAAAAAAAssJdk1+3A297xT+3hnsqkKDFvuqqnu/sPHCPuE0k+OO+JrqhyNcn3HCPuYBQ7AAAAAABgzXRTSm3lTlHjNbqixHYmU1wd1ZkkDy14/vlum9FQ7AAAAAAAgPVzrrvfWbDNdnJ7uqujurzgudPT2GOh2AEAAAAAAOvn/BLbTAshRx2FsZ3kXCnlZjeCZL/Hk1w5YsxBbQzdAAAAAAAAeJ04WUpZuEGt9cUlY02LEC8v2OaV7v70kjGnLie5lkmR5PlSysVa69UkKaU8k+RqrfXGEWMOSrEDAAAAAABW49kltllcDbljs7tfNI3VsdRar5dSnkxyqXvoqVLKY93X16aFjzFR7AAAAAAAYIHd7sZ8zc7NogXE72XbJEmt9XIp5dlMRngkkzVCdjKy6aumFDsAAAAAAGA13pnkpQHImi/+AAAgAElEQVTybh6+yWt1a3VcTHIrd9b82EzyTCnlyVrrogXM144FygEAAAAAYDVeqrW+uOh2hFivHL7JbUea6qqUcibJzSS3aq1nk5xIMrtGx6VSyqW5O68pxQ4AAAAAAFg/RylgHKUwkkymrnp6Onqj1rpTaz2fyUiPqSullCOPGBmKYgcAAAAAAKyfaQFjUcFhulbH0oWRbsTGVpK7pqnqFiY/PRPv3cvGHZo1OwAAAAAAWGAvFihfZK9V4O3u/q0LtpkWQp49Qtx3Jrlea51bIKm1bpdSvjWTaa7OHiHuoIzsAAAAAACA9XOzu180smOru7+xYJt5+yyc9qrWeiuTYsvzR4g7KMUOAAAAAABYP0939+9YsM1Wku2DRmkcYPuQmLNuHSHuoExjNSJ/4r3Jgw3j/8M/0DD41Na72sb/sbbhkyQfa5/it/5C+xyPfFP7HPlIDzn+18bxf7px/CT52h5yfGkPOb6jhxyfaxv+nZ9uGz9J8lU95Fj2z5V78cU95Hh7Dzmeaxt+76jLwx3DA+9vn+MzP9A+x4Mvts+RTzaO/182jp9MZs5t7Z/1kOMo/4Yd14+0T/HZ32gb/w19/F76+h6SfGH7FLc/z9jSX+whR+v39B9qHD9JvreHHG/rIcfbe8jx4cbxv7Nx/KSX332/9at/v3mOR768eYrkUg85Wv9//PnG8ZPkDzeK+6kk/7xRbGio1rpTSrme5EIpZXN/QaOUcq778sr+fUspW0meyqQQcnHf008leaaUslVr3d6/78z+qbUeZcTIoIzsAAAAAACA9fSeTD4udFdBo3vsVreo+H4Xk5xL8ngp5czsE10B48l0BY/9O3aPPZPksXtse6+M7AAAAAAAgDXUje44m0lh4qlMRmU8lORykldqrecP2PWDSS5kMrLjrqmoaq2XSynPJ7lZSnk6d9YHOZvJnBHnDxr1sa4UOwAAAAAAWGC3uzFf23PTFR1Od9NWnctkpMfleUWMmX1u5ZCJcLsRIVe7uNMRHlfGVuSYUuwAAAAAAIA1100/tfI1NMa0Lsci1uwAAAAAAABGTbEDAAAAAAAYNcUOAAAAAABg1BQ7AAAAAACAUbNAOQAAAAAAC+wl2R26EWtsb+gGECM7AAAAAACAkVPsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFHbGLoBAAAAAACss93uxnzOzTowsgMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYtY2hGwAAAAAAwDrb7W7M59ysAyM7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDVrdozIn0nypS0TfH3L4J2txvF/snH8JPn52jzFIx8rzXPke9qnyC/3kOP/bBz/XY3jJ8nv6yHHv+ohx7kecvxS2/AvvbFt/CQ5+e72OfJdPeT4Rz3k6OP3UtNfrMkDH20bP0nyK+1TPNjHdfuFPeT4hcbxv79x/CT5uh5yfFUPOX62hxwn26d4w6cbJ/jOxvGT5It7yPGxHnK8qYccv9NDjj/aOP7/0zh+kvyhHnJ8roccH+8hx9c0jt/HNdvD/0uPtO5HSJIv7yHHJ3rI8b7G8fv4/f3mRnH7+H0HDM7IDgAAAAAAYNSM7AAAAAAAYIG9JLtDN2KN7Q3dAGJkBwAAAAAAMHKKHQAAAAAAwKgpdgAAAAAAAKOm2AEAAAAAAIyaYgcAAAAAADBqG0M3AAAAAACAdbbX3ZjPuVkHRnYAAAAAAACjptgBAAAAAACMmmIHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo7YxdAMAAAAAAFhne0l2h27EGtsbugHEyA4AAAAAAGDkFDsAAAAAAIBRU+wAAAAAAABGTbEDAAAAAAAYNcUOAAAAAABg1DaGbgAAAAAAAOtst7sxn3OzDozsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFGzQPmIfNOfSU69pWGCH2kYe+qvtw1ff6Ft/CQp31zaJ/nfa/scf679cfzc+5unyDsbx3/rqcYJkuRiDzn+rx5yvNxDjl9pG/5/aRs+SfJfnOkhyY0ecnyshxx9XFMnG8f/usbxk3zm77TP8eB3tc+Rb+0hx+cax39X4/hJPz/fffzs/XIPOf7dHnLsNI7/wcbxk2Szhxxv6yHHz7dP8epPtc9x4rsbJ+jjPWSrhxy/1EOOL+khx+80jv9PG8dPkgs95Ojj7+dbPeT4cA85PtpDjtb+RqO4PXSzAMNT7AAAAAAAYIHd7sZ8zs06MI0VAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo6bYAQAAAAAAjJoFygEAAAAAWGAvFuFeZG/oBhAjOwAAAAAAgJFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBR2xi6AQAAAAAArLPd7sZ8zs06MLIDAAAAAAAYNcUOAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGLWNoRsAAAAAAMA620uyO3Qj1tje0A0gRnYAAAAAAAAjp9gBAAAAAACMmmIHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo7YxdAMAAAAAAFhnu92N+ZybdaDYMSbvSPJ72oXf++F2sace+I628X+jbfgkydsv9JDkr5b2Od73L5qn+La//bXNc+RM2/C/fqNt/CR5+196S/skf/eT7XP8B+1T5Kvahn+gbfiJPt5DPtFDjmd7yPFjPeT4o43j/+PG8ZM8+Bfa52j9Xpskud5Djv+wcfy/3Dh+kvxmDzl6+N2Xt/aQ4w/3kON3G8fv42evj/fzz/WQo4fX+0QP7+n5HxrH//HG8ZPkv31j+xx/8dPtc/TxXvjVjeN/Y+P4SfLf9JDjl3vI0cNlm4/2kKP179evbBw/ST7WKO5ukl9vFBtYG6axAgAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQUOwAAAAAAgFGzQDkAAAAAAAvsZbLSO/PtDd0AYmQHAAAAAAAwcoodAAAAAADAqCl2AAAAAAAAo6bYAQAAAAAAjJpiBwAAAAAAMGobQzcAAAAAAIB1tpvkgaEbscZ2h24AMbIDAAAAAAAYOcUOAAAAAABg1BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGLWNoRsAAAAAAMA620uyO3Qj1tje0A0gRnYAAAAAAAAjp9gBAAAAAACMmmIHAAAAAAAwaoodAAAAAADAqCl2AAAAAAAAo7YxdAMAAAAAAFhnu/G5+UV2h24AcYUCAAAAAAAjZ2THiHznn0y+qGH8X353w+BT/3bb8G//4bbxkyRf2T7F//Fd7XP8e+/72vZJXv5c+xzf8YVNw7/9l5qGT5LU8snmOcqp5imSH+ohR+OfjT/XNnyS5KWvap/j5B9rnyMf6yHHH+whx43G8b+ucfwk2Wuf4re+r32OR36lfY78TOP4fVyzf7yHHF/cQ47faJ/iMz/VPseDbf8MSb68cfykl9civ9NDjh7+fs4395DjDzSO/+2N4yfZK59unuOBHo4j39hDjta/l/5Q4/hJ/nUP/x/38F9lHunhOHrxtsbxrzeOnyQfahT3t9PP+zgwKCM7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDVrdgAAAAAAsMBufG5+kd2hG0BcoQAAAAAAwMgpdgAAAAAAAKOm2AEAAAAAAIyaYgcAAAAAADBqih0AAAAAAMCobQzdAAAAAAAA1tlekt2hG7HG9oZuADGyAwAAAAAAGDnFDgAAAAAAYNQUOwAAAAAAgFFT7AAAAAAAAEbNAuUAAAAAACywm6QM3Yg1ZvH2dWBkBwAAAAAAMGqKHQAAAAAAwKgpdgAAAAAAAKOm2AEAAAAAAIyaYgcAAAAAADBqG0M3AAAAAACAdbaXpAzdiDW2N3QDiJEdAAAAAADAyCl2AAAAAAAAo2YaqxH5m0m+vGWCF1oG73xp4/h/q3H8JDnTPsXva58iudBDju//wvY5fvZ3moa/Wd7cNH6SnP3e5imSN/aQ49t7yPGnG8f/xsbxk5z8wfY5st1Djm/uIcdLPeT4tcbx+/jZ+4H2KR75pfY58sEecpxsG/6fPN02fpJ8y7vb58hX9pDjd9unePDH2+fIX2sc/02N4yfJp3rI8bYecvxiDzn+VA85Hm8c/0bj+EkeONU+R764fYpPXm2f4y2t//H7eOP4Sb7s+9rnyCd6yPHhHnI82kOOVxrH7+H/pXxDo7ifbxQXWCtGdgAAAAAAAKOm2AEAAAAAAIyaaawAAAAAAFhgL0kZuhFrbG/oBhAjOwAAAAAAgJFT7AAAAAAAAEZNsQMAAAAAABg1xQ4AAAAAAGDUFDsAAAAAAIBR2xi6AQAAAAAArLO9oRuw5pyfdWBkBwAAAAAAMGqKHQAAAAAAwKgpdgAAAAAAAKOm2AEAAAAAAIyaYgcAAAAAADBqG0M3AAAAAACAdbabpA7diDW2N3QDiJEdAAAAAADAyCl2AAAAAAAAo6bYAQAAAAAAjJpiBwAAAAAAMGqKHQAAAAAAwKhtDN0AAAAAAADW2W6SOnQj1tje0A0gRnYAAAAAAAAjp9gBAAAAAACMmmIHAAAAAAAwatbsGJEfTfJvNYz/P368YfCpdzWO/6WN4yfJ17VPceKV9jlyvYcc/7x9ilfLm5vGP1t7OFGPXGif423tU+TDPeT4623Dv/rutvGT5Hf+QfscX/F4+xz5mR5yPNpDjnON459sHD9JfrqHHNs95PhIDzn+dNvw33K1bfwkyd/rIUcf7+c9/K3zr//T9jm+7FTjBJ9tHD9J/rMecvRx3fbwN3qe7CFH6//J/p3G8ZPk0z3k+Gj7FG95f/sc+eHG8d/ROH6S/GIPOXZ6yNHHuXp7Dzla/9/3s43jJ+36ET6e5BsaxQbWhpEdAAAAAADAqBnZAQAAAADAAntJ6tCNWGOfH7oBxMgOAAAAAABg5BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDXFDgAAAAAAYNQ2hm4AAAAAAADrbDc+N7/I54duAHGFAgAAAAAAI6fYAQAAAAAAjJpiBwAAAAAAMGqKHQAAAAAAwKgpdgAAAAAAAKO2MXQDAAAAAABYZ3tJPj90I9ZYHboBxMgOAAAAAABg5BQ7AAAAAACAUVPsAAAAAAAARk2xAwAAAAAAGDULlAMAAAAAsMBukjJ0I9aYBcrXgZEdAAAAAADAqCl2AAAAAAAAo6bYAQAAAAAAjJpiBwAAAAAAMGqKHQAAAAAAwKiVWq0Uv85KKaeSvJAkL/znyakvaZfrpb/SLvbUye228T+71TZ+krzhh9rnyO/2kOObesjxeA85fn/b8K/+Qtv4SXKivto+ybUT7XN8qn2K/HTb8P/zjbbxk+RP/GT7HPl4Dzke6CHH3+khxxsbx+/jPPXhzNANWJF3NY7/lxvHT5If7CFHH3+H/GgPOXr4O+Q3/2zb+F/Rx3lq/Pd5kuTlHnJ8dQ85+jhX/3Hj+D/fOH6S9PA/WXr4Gz1v7iHHQ43j9/E34ff3kOOLesjRw/8BeaWHHOcax/+1xvGT5P1twr64mzz60u1vH621vtgm0+vLa/olfzM5dWrgBq2xF19MHv2K29+6xgZiZAcAAAAAADBqih0AAAAAAMCobQzdgDEppVxIcjHJTpLN7v69tdZbgzYMAAAAAADuY/d1saOUspnkA7XWx5bY9kqSC0nO1lp3usfOJPlQKeU9tdbrbVsLAAAAAADMc18WO0opW5kULp5IsllK2ZwWMA7Y/lySS5kpdCRJrfVWKeVykmullBOLYgAAAAAAAG3cV2t2lFIulVKeT3Ild6aiWsZTSXYOmK7q6e7+AytoIgAAAADAevm826E3BndfFTtqrU/WWk/XWh+rtV7NpOCxUDcKZCt3ihr7Y+4k2c5kpAgAAAAAANCz+6rYcUznuvtFhZHt5PZ0VwAAAAAAQI8UOw53foltpoWQMy0bAgAAAAAA3O2+XKD8iLa6+5cXbPNKd3/6qMFLKacO2eTkUWMCAAAAAMD9RLHjcNNFzA9d3+OYXmgUFwAAAAAA7guKHYd7qNG2AAAAAADrb6+7MZ9zsxYUO1Zr8/BN7vLoIc+fTPLsMeICAAAAAMB9QbHjcK9k+SLGkae6qrW+uOj5UspRQwIAAAAA8DpSSrmQ5GImfdCb3f17a623VhB7K8nlJO/IpD/8oS729XuN3SfFjsMdpYDxyuGbAAAAAADAckopV5JcSHK21rrTPXYmyYdKKe+5l6JEV0T5QJLLtdaLM48/U0rJmAoeXzB0A0ZgWsBYNLpjulZHq0XMAQAAAAC4z5RSziW5lOSxaaEjSboRHZeTXCulHGd5hWnsa0neU2u9OvP4ZpLtJE/cS9v7pthxuO3u/q0LtpleTNbWAAAAAABgVZ5KsnPAdFVPd/cfOGrQrqBxLcmNOaM3nkjyeJKto8YdkmmsDnezu19UHZu+6DcatwUAAAAAoF973Y35Gp2bbi2NrSRX5z1fa90ppWxnMsXVUV3JpM/7qTnPfTCTYsfcvOvKyI7DTatj71iwzVaS7dlhRAAAAAAAcA/OdfeL+p23k9tTUh3F4939XR/gr7XeqrWeqLVePmLMQSl2/P/s3X2QpVd9H/jvQYN4URjNSGC0WDJSj1kcDBHMiGXjwiFAC3AtjtcgCTuJ7ThGEqnyZjeFmcGmXPFulQ0DqdRmk4BHkhfHa8dBEmbxssGgEYTYJZsItcAQgldMI0qCEtFqGElByGK7z/7RT0vN0G8j3XPufaY/n6qnbk/f5/6+p59+ubf7N+ecFedsdMfQwLgxyf711j5b80V0uNHYAAAAAADYeS7dxjmrjZD92y06bEqenGb/gX/HLmM1NC5WmxdzeWxvjvVcmZUu2uEkV5903+EkC2s3cAEAAAAAYEc6r5Sy6Qm11ru3WWt1+4T7Njnn+HC7b5s1k+Slw+2JJCmlHBzet/r38sO11tFt2bCjZnaUUuZLKcdKKTXJN9fcdVMppQ73HTz5cUN360CS+VLKkVLK/qHWTUmO11oPdPoQAAAAAACYXbcmuWuLY7tWmw+Tnn2xOgvkeCll9T/zX15rvTQr/9n/hvX+Tj7rdtTMjlrr0VLKgY2m5pRS9mx0X611Mcm+Ydmq+ax8gR2qtS60GzEAAAAAADvUhtsvTOjcc5Lct3YWR611sZRyKMmRUspirfXGU6g7VTuq2ZE8OkvjlO9bc87RrLNpCwAAAADAaakmWZ72IGZY/a5/vTTJPVMYxffsN72Nc/cnefU696/+/ftwVvazHoUd1+wYtRckeWa78ve2K/2o877ctv4Zbcuv2GyFvEl5qENGjyeoRzpkNP6kn8qzxOP2/+xtn3H5g+0z/s9ntM/4s7blH25bfkWPH1QdPhWnNOn28XpOh4zWP9Mvblw/Sb7eIaPHc99ZHTI+17h+j++LHj9DWl+nJHl6h4wOP9R/4JWNA3rMIe/xnNHjCfZPOmT08Oq5rc95It632VaVE3LyLpct/GmHjA6XqvUv4cc+2rZ+kuz7ifYZeUmHjH/YIeMXOmTc0rh+j8/3/9YhA9q75xT25NjK8Wz/z1OnstTV6rnrblA+zO5IkrlSyvxY9u/YUXt2AAAAAADASJxKA+P41qd8z7mb1V+9r/H/xpgczQ4AAAAAAJg9q02JzWZ3rO6/8XhmdmzWIFm978Ap1J0qzQ4AAAAAAJg9qwsrnrvJOauNkFtPoe7quZttar5637FTqDtVmh0AAAAAADB7bhtuN5vZsbrM1Knsq7F67nb2A+mxk9VE2KAcAAAAAICNLQ0H62t3ba5PciTJJZucM5cNNhrfSK11oZRyIhvsx1FK2ZPHGiGj2Jw8MbMDAAAAAABmztDAuDHJ/qEB8V1KKfPDm4fXuW+ulHJTKeXIBuXfeVKNtVabK+8+lSbKtGl2AAAAAADAbLoyKxuKf09DY3jfQq31mnXuuzrJfJKrSin7T76z1vruJAtZmTmyXt3FWuuhxz3qKdDsAAAAAACAGTTMrDiQZL6UcqSUsr+UMl9KuSnJ8VrrgQ0e+oGs7LdxtNa6sME5r05yopRyrJRyVSnlYCnltiTHh8xRsWcHAAAAAADMqFrrYpJ9w5JT81mZ6XFokyZGhvv2bVH3RJIDpZS5oe5iksuHvNHR7AAAAAAAgBlXaz2aBhuGD82N9ZbCGhXNDgAAAAAANrY8HKzPtZkJ9uwAAAAAAABGTbMDAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARm3XtAcAAAAAAMAMW06yNO1BzLDlaQ+AxMwOAAAAAABg5DQ7AAAAAACAUdPsAAAAAAAARk2zAwAAAAAAGDXNDgAAAAAAYNR2TXsAAAAAAADMsKXhYH2uzUwwswMAAAAAABg1MzvG5J8nObNd+Re9vF3tRx1rW/6Mp7etnyR5RYeMD3fI+MEOGS/qkPH6tuUf+mjb+kly1tfbZ+Rjz2if8T882D5jX9uP47zPNS2/4uIOGd/okPGdDhlzHTJaf85/v3H9JHlHh4zlDhlP7ZBxonH9FzSunyT3dMiY75DR4Smjy8+Q1k+vPb6mjnbIeHKHjKd0yPi5DhnHFtvWf3Pb8kmSf9who8f390c6ZOxvW37fVW3rJ0me3yHjtzpkfKtDRg+tvzc+1Lh+kpzVqG6P31+AqTOzAwAAAAAAGDXNDgAAAAAAYNQsYwUAAAAAwMaW02d527FybWaCmR0AAAAAAMCoaXYAAAAAAACjptkBAAAAAACMmmYHAAAAAAAwapodAAAAAADAqO2a9gAAAAAAAJhhS8PB+lybmWBmBwAAAAAAMGqaHQAAAAAAwKhpdgAAAAAAAKOm2QEAAAAAAIyaZgcAAAAAADBqu6Y9AAAAAAAAZthykqVpD2KGLU97ACRmdgAAAAAAACOn2QEAAAAAAIyaZgcAAAAAADBqmh0AAAAAAMCoaXYAAAAAAACjtmvaAwAAAAAAYIYtDwfrc21mgpkdAAAAAADAqGl2AAAAAAAAo2YZqxF5258nZzWsf90bGxZf9ZnG9X+scf0k+XSHjC90yHhNh4z5Dhm/2rb8We9qWz9J8jMdMr7RIeP9z2if8dnvNC3/4694ctP6SfLAxc0jsrvHz8LFDhkPdsj4643r72lcP0k+2iHj3g4Zr+2QMde4/isa10+SHs9L53fI6PD9/cBvtc9obXeHp9b8ZIeMHs8Zt3TI+HsdMtq+1Ele37h+kvs+1D7j3HPaZ+S3O2T8j43r/1nj+knytfYRS/93+4wzOrxGzw92yLimcf07GtdPkjc0qvut9Hk+AqbKzA4AAAAAAGDUNDsAAAAAAIBRs4wVAAAAAAAbWxoO1ufazAQzOwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUNDsAAAAAAIBR2zXtAQAAAAAAMMNqkuVpD2KG1WkPgMTMDgAAAAAAYOQ0OwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUdk17AAAAAAAAzLCl4WB9rs1MMLMDAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARk2zAwAAAAAAGLVd0x4AAAAAAAAzbGk4WJ9rMxPM7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUSq112mNgE6WU85PclSRPTdvu1Lde07D44KaPt61/6Xzb+knyH4+2z/hM+4h8ukPGe/9W+4wv/WHb+j/0wrb1k+THv9A+4xXtI/LZDhm/+5LGAQt/1Dgg+cXyuuYZFzZPSJ7fIeNFHTIWG9e/pHH9JNl9dvuMX76/fcbB9hH5euP6P/xXGgck+T/+S/uM4+0j8iMdMm7pkPFw4/oXNK6fJD/dIaP1916S3NMh43MdMr7auP5bG9dPkg90yNjXIeNVrV93Jvl3t7et/5y25ZMk/7JDxp4OGT1e2/7tDp+Qaxv/wH1q2/JJkr/bqO7dSX7gsX9eUGu9u1HUaWXt3yXvOpqcf96UBzTD7r4nueCxv0v6GpsSMzsAAAAAAIBR2zXtAQAAAAAAMMOWh4P1uTYzwcwOAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARk2zAwAAAAAAGDXNDgAAAAAAYNR2TXsAAAAAAADMsOUkS9MexAxbnvYASMzsAAAAAAAARk6zAwAAAAAAGDXNDgAAAAAAYNQ0OwAAAAAAgFGzQTkAAAAAABtbig3KN+PazAQzOwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUNDsAAAAAAIBR2zXtAQAAAAAAMMOWh4P1uTYzwcwOAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARk2zAwAAAAAAGDXNDgAAAAAAYNRKrXXaY2ATpZTzk9yVJHf9SnL+nnZZ3z7Yrvaqp72vbf3/+A/a1k+SH/7v2mfkTR0ynto+4ptXtM/Y+4629f/dr7etnyR/8+PtM7LQIeNn20c88py29f9V2/JJkit7PO++p7TPeLB9RBY7ZLT+OB5qXD9JXtgh44wOGX/cIeO/bVy/xw+RX+qQMdch4/0dMl7SIePTjev/aOP6SfuPIUme0iGjx3PGGzpkvKxx/c81rp8kJzpk3NM+Yun32mec0fo5/DuN6ydJh9/5cmaHjFs7ZPxFh4wXNK7/7Mb1k3zrN9vU/VqS5z/2zwtqrXe3STq9fNffJT+cnP99Ux7QDLv7PycX/MSj//Q1NiVmdgAAAAAAAKOm2QEAAAAAAIyaZgcAAAAAADBqmh0AAAAAAMCoaXYAAAAAAACjtmvaAwAAAAAAYIYtDwfrc21mgpkdAAAAAADAqGl2AAAAAAAAo6bZAQAAAAAAjJpmBwAAAAAAMGqaHQAAAAAAwKjtmvYAAAAAAACYYUvDwfpcm0czadYAACAASURBVJlgZgcAAAAAADBqmh0AAAAAAMCoaXYAAAAAAACjptkBAAAAAACMmmYHAAAAAAAwarumPQAAAAAAAGbYcpKlaQ9ihi1PewAkZnYAAAAAAAAjp9kBAAAAAACMmmYHAAAAAAAwapodAAAAAADAqGl2AAAAAAAAo7Zr2gMAAAAAAGCGLQ8H63NtZoJmx5j8SZKntiv/tGe3q/2ofW3L//Az29ZPkrypQ8aHO2T8dPuIvT/bPiN3tC3/N3+ybf0kydc6ZJzokPG59hFnNv58nPuhtvWTJP+stM9421faZ/ziRe0zPtk+Im9tXP/TjesnycUdMr7cIePnO2Sc0bj+CxrXT5LndMj423PtMz672D7jePuIlq/Nu9RPkg6f7jzcIaPx7xlJkld0yFhoXP8ZjesnyQMdMjr8QemM0+B3mby0cf0kuaBDxu92yHhWh4werxNafz7ubFw/yVlXtKn79IeSfKRNbWB2WMYKAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARs0G5QAAAAAAbGxpOFifazMTzOwAAAAAAABGTbMDAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARm3XtAcAAAAAAMAMWxoO1ufazAQzOwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUNDsAAAAAAIBR2zXtAQAAAAAAMMNqkuVpD2KG1WkPgMTMDgAAAAAAYOQ0OwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1G5QDAAAAALCxpeFgfa7NTDCzAwAAAAAAGDXNDgAAAAAAYNQsYzUmT0ny1Ib1L2hYe9W9HTJau6NDxhkdMt74gvYZv/rF9hmvalv+nn/Ztn6SnPc/tc/I1ztkvKxDxtvalu/xYzAdvvVy7UXtM/5Fhx+Gdz6vfcYtjesfb1w/SR7skPH0Dhn/qUPG8xvXf7hx/ST5fIeM315sn/Hl9hG5okNG4+el/Ejj+snp89q2x2udOztk/M+N6/9x4/pJsqdDxpkdMv51h4zWrwu/1rh+kryxQ8aPdsi4q0NGj9dsrV+LtH4tlSS/16iuJYZgRzCzAwAAAAAAGDXNDgAAAAAAYNQsYwUAAAAAwMaWh4P1uTYzwcwOAAAAAABg1DQ7AAAAAACAUdPsAAAAAAAARk2zAwAAAAAAGDXNDgAAAAAAYNR2TXsAAAAAAADMsOUkS9MexAxbnvYASMzsAAAAAAAARk6zAwAAAAAAGDXNDgAAAAAAYNQ0OwAAAAAAgFHT7AAAAAAAAEZt17QHAAAAAADADFsaDtbn2swEMzsAAAAAAIBR0+wAAAAAAABGTbMDAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUds17QEAAAAAADDDloeD9bk2M8HMDgAAAAAAYNQ0OwAAAAAAgFGzjNWIPHhT8kDD+rv/VsPiq25pXP+sxvWT5LwOGV/ukPHbX2yf8eL2EdnTtvx5z2xbP0nyyQ4Z93bI2DvXIWSxafWnNq0+aPmDfFWPn4V/93ntMz5yXfuMf/TmtvV7/Dzv8f3dI+PiDhl/2rh+j9cIPabHv6pDxqc6ZCy0j7jv7rb1z3122/pJku90yFjqkPFQh4yXdcg41rj+w43rJ8nvdMh4ffuIR77SPuPM1q/ZejwvfbpDxq0dMnq8fr6zQ8bZjet/tXH9JHluo7p/meQbjWoDM8PMDgAAAAAAYNQ0OwAAAAAAgFGzjBUAAAAAABtbSp+lKcfKtZkJZnYAAAAAAACjptkBAAAAAACMmmYHAAAAAAAwapodAAAAAADAqGl2AAAAAAAAo7Zr2gMAAAAAAGCGLSdZmvYgZtjytAdAYmYHAAAAAAAwcpodAAAAAADAqGl2AAAAAAAAo6bZAQAAAAAAjJpmBwAAAAAAMGq7pj0AAAAAAABm2PJwsD7XZiaY2QEAAAAAAIyaZgcAAAAAADBqmh0AAAAAAMCoaXYAAAAAAACjptkBAAAAAAAzrJRyWSnlplLKDWtu9zfKuq1V7ZZ2TXsAAAAAAADMsKXhYH2Nr00p5XCSy5IcqLWeGN63P8nNpZQra603TjDrYJLRNToSzQ4AAAAAAJhJpZT5JAezptGRJLXWhVLKoSQ3lFL2rr3vCWTtSXL4idaZFstYAQAAAADAbDqS5EStdWGd+64fbq+dUNa1SRYnVKs7zQ4AAAAAAJgxpZS5JHN5rKnxXYbZHItZWeLqiWbNJ7k1I252WMZqRP4yycMN6+9+QcPiq1p+AEn+6Ktt6yfJ625pn5Gvdcj4coeMYx0yPtW4/ssa10+Sz3fI+GKHjPd0eC58btvy932hbf0kyQc7ZPyNDhk9vqZ+5M3tM275Ttv6P/rktvWT5HfaR+QPO2T8Lx0y7m9c/zmN6yfJfR0yfqVDxl90yHiwfcS5z28c8NHG9ZPknA4ZPdb3bvzjPEnypQ4Ztzau3/j3sSTJ0ztkfKJ9xJkXtc/I1xvX/1bj+kny6fYRD3y8fcbul7TPyL0dMlq/Rj/euH6StPrb1Lcb1YX25ofbzZaoWkwyV0qZr7UefQJZh2qtl5ZSLn0CNabKzA4AAAAAAJg922k8rDZCHvem4sMG6Ice7+NnhZkdAAAAAABsbHk4WN93X5vzSimbnl5rvXubleeG283meK/Ou9q3zZrfZVgqa88Ge4KMimYHAAAAAABMxnYWpty8G/KYPcPtZstYPVFHklzesH43lrECAAAAAIDZcyo7rJ3ybmyllKuSHBk2Oh89MzsAAAAAAGAyXprknink7tn6lMeUUvYkubTWelrM6kg0OwAAAAAAYFLuOYU9ObZyPNtvYpzq7IzTYlPytTQ7AAAAAADY2HKSpWkPYoa127z9VBoYx7c+ZUUpZT7JiVrr4qkPaXZpdgAAAAAAwOxZbWBsNrtjda+OU2mMHKq1Xvr4hjS7NDsAAAAAAGD2rM68OHeTc1YbIbdup2ApZX+SS0op39yi3s2llCRJrXXvdmpPm2YHAAAAAADMntuG281mdswNt0e3U7DWupBkw+ZFKeXYUPPVw7mj8aRpDwAAAAAAAPge1w+3l2xyzlySxVrrqW5QftrR7AAAAAAAgBkzNDBuTLK/lPI9szuGjcaT5PA6982VUm4qpRw5xdhzTrodDctYAQAAAACwsaXhYH1tr82VSeaz0tC4+qT7DidZqLVes87jrh4el1LKke0sSTU0VFabKnObnTuLzOwAAAAAAIAZNMzuOJBkvpRypJSyv5QyX0q5KcnxWuuBDR76gaxscH50q0ZHKeXgsFfH2k3Lj5RSjpVSbtvocbPGzA4AAAAAAJhRtdbFJPuGZavmk5xIcmizJsZw375t1n93KeWa9fb9WG/5rFml2QEAAAAAADOu1no0ydFGtdfd4HxMG59bxgoAAAAAABg1zQ4AAAAAAGDULGMFAAAAAMDGloeD9bk2M8HMDgAAAAAAYNQ0OwAAAAAAgFHT7AAAAAAAAEZNswMAAAAAABg1zQ4AAAAAAGDUdk17AGzfM78/+b6Gn7Fvv6td7VVP+3tt67/uB9vWT5J8pkPGs9tH1F9vn1Guap+R443rX9a4fpK8o0PGCzpk9Pg4nt+2/P625Vf8cYeMpQ4ZPSx2yHj9k9vW/+Pb29ZPkl98SfOIBy5uHpHdf7V9Rh5sXP+uxvWT5FsdMi7okNHjWj2nQ0Zjj/xh+4wzL2mfUTu8fi4Xtc945E/bZ5zZ+Ef6Ax2elna/vH1GHumQsa99xLeOtq1/Voffj+sH22fs7vA6JN/okPFw+4il/9C2/hk9PhetrtNfNqq7kyzn9Plds4XlaQ+AxMwOAAAAAABg5DQ7AAAAAACAUduxzY5SysFSyrFSyjeH2xtKKXPbeNxlpZSbhvNXb7usfAIAAAAAAHyvHblnRynlhqysBH6g1npiaFbckORYKeVQrfXdGzzucFZW8D9Qaz0xvG9/kptLKVfWWm/s9CEAAAAAAACDHTezY2hYHK+1HlptWNRaF5IcGE45XEqZX+dx80kOJrl89XFrHnsoyQ2llD3NPwAAAAAAAOC77Khmx9CMuKrWevXJ9w0NjNUZHTes8/AjSU4MzY2TXT/cXjuRgQIAAAAAzIplx5YHU7ejmh1J5pMc3eT+m4bbPWv37xjenstjTY3vMjRKFrOyxBUAAAAAANDRTmt2vDTJZaWUYxvcv7jm7bWbjq8ua3UiG1tMHl3uCgAAAAAA6GSnNTtWzQ0bi59s7Z4baxsbl26j5ur569UFAAAAAAAa2TXtAXR2JMlVST6zwd4bc2veXlzn/fdtUvv4cLvvVAZUSjl/i1POO5V6AAAAAACw0+yoZketdTHJ3k1OedNwuzCcu2p1xsdmy1g9Xnc1qAkAAAAAADvGjmp2bGbYhHx1g/ErT7r7nFModSrnAgAAAADMtqXhYH2uzUzQ7HjMkeH20AZLXG3Xnq1P+S4XbHH/eUlufZxjAQAAAACA055mR5JSylVJ5pNcU2t99zqnHM/2mxintNRVrfXuLcZ2KuUAAAAAAGDHedK0BzBtpZQ9SQ5npdFx9QannUoD4/jWpwAAAAAAAJOy45sdSW5Lcv0mjY7ksQbGZrM7VvfqaLGJOQAAAAAAsIEd3ewopdyQ5OgWjY4kWRxuz93knNVGiP01AAAAAACgox27Z0cp5XCSrNfoKKVcluRErfXo8K7bhtvNZnbMDbdHNzkHAAAAAGBclpMsTXsQM2x52gMg2aEzO4Zmxlyt9fINTnlTHpvNkSTXD7eXbFJ2LslirdUyVgAAAAAA0NGOm9lRStmflQ3Jrx7eXuucrMzemK+1PtrsqLWeKKXcmOSyUsqekxsapZT54c3DDYcOAAAAAACsY0c1O0ope5LcnJWGxk2bnLq4zvuuTDKfoVFy0n2HkyzUWq+ZxDgBAAAAAIDt22nLWB3O5vturPqeZscwm+NAkvlSypFSyv5Synwp5aYkx2utByY8VgAAAAAAYBt21MyOYTPy79mQ/BQev5hk37Bs1XySE0kO1VoXJjREAAAAAADgFO2oZsek1FqPJjk67XEAAAAAADS3PBysz7WZCZodI/LnX0u+0bD+gfmtz3nCHmpc/xWN6/fyofYR5R3tM7oslPdzjeu3/KZbdXGHjKUOGb/ZIeN325bffVHb+kmSH++Q8cIOGc/pkHFLh4y7G9f/+Zc0Dkjy/gebR+z+8DOaZ+T17SPy1cb172hcP0le1iHjX53ZPmP/I+0zfrR9RG5tW/7Mv9O2fpLk4fYR5YL2GT1e65zZ4zn8nLbld/f4ne/jHTJe3iHjw+0jzvorjQPObVw/SfmH7TPygQ4Z21nw/Il6dvuIM1pnPL1x/SR5aqO6tVFdYKbstD07AAAAAACA04xmBwAAAAAAMGqaHQAAAAAAwKhpdgAAAAAAAKNmg3IAAAAAADa2NBysz7WZCWZ2AAAAAAAAo6bZAQAAAAAAjJpmBwAAAAAAMGqaHQAAAAAAwKhpdgAAAAAAAKO2a9oDAAAAAABghi0NB+tzbWaCmR0AAAAAAMCoTW1mRynlzUkuTbInyW1J3lVrfWDN/W9LMjfct1hr/cRUBgoAAAAAAMy0qTQ7Sikfy0qjY9WlSQ6WUg7UWj+XJLXW95RS5pJ8JsnuWHILAAAAAABYR/dlrEopV2aluXEoyb7huCLJ55IslFJeuXpurXUxyWKS0nucAAAAAADAOExjtsRVSS6ttd685n1fSXJjKeXgcPuq1RkeSY53HyEAAAAAACtqkuVpD2KG1WkPgGQ6G5SXkxodj6q1vjvJm5J8opTy3L7DAgAAAAAAxmgazY7Fze6stR7NyjJXR0spF/YYEAAAAAAAMF5TaXaUUl6cJKWU3aWU3SefUGtdSPLaJDcmOafz+AAAAAAAgBGZaLOjlPKxrc6ptb49yXWllDcnuTMb7MkxbE5+RZK9kxwjAAAAAABwepn0zI75Usoztjqp1npJVpoYn0ly3SbnLSY5kOSDExshAAAAAABwWtk14XolybVJfmqrE2ut70nynm2cdyIrMzwAAAAAAOhtaThYn2szE1rs2XFFKeVWm4sDAAAAAAA9THpmR5LsyUoT5ZpSyrFa6y83yAAAAAAAAEgy+WbHjbXWB4a3ryilvKSU8vEkv1lr/YMJZ+04f+35yflPbhjwrYa1V/1Y4/q/2rh+kvxah4yLO2S8tUPGazpk/Frb8g+8vm39JNn90fYZuaVDxt//kfYZ/7btB/JHn2xaPknyuh7f32d3yHheh4yHOmS0mOO61kca10+Sf77ldmlP3F2722f80we2PueJmmtc/y8a10+S53bI+N8faZ/x2vYRXV5PtX5+fVnj+kny+x0yWv4Os+pZHTJe3iHjgsb1v9S4fpJ8oUPGKztkvL9DxiWN6z+9cf0k+Wd/o33Gvf++fcZ97SPycIeMF3XIaO3ORnX/slFdYKZM9Ff8WusVJ/379lrra5KcW0r5WCnlxZPMAwAAAAAAaP3/GZMktdZrs7LJ+FtKKe8rpXT474EAAAAAAMBO0GLPjnXVWu/PSrPjoiTXlVI+Xmu9rlc+AAAAAACPw/JwsD7XZiZ0mdmxVq31K8NyV9+0tBUAAAAAAPBETbTZUUr52HbPrbV+sNb62iQ/ZWkrAAAAAADg8Zr0zI5LTuXkocHxm0kWktxWSnnrhMcDAAAAAACc5ia9Z8feUspvJPlMknOS7Emyb83bq7dzGzz+3aWUq5NcXWv95ITHBgAAAAAAnIZabFB+aIP3l20+/plJ3p5EswMAAAAAANhSi2bHyU2NhSTHk5xIspjkvuHt42tuF2ut9zcYCwAAAAAAT8RykqVpD2KGLU97ACRtmh1ztdY7k6SUcjAr+3gcXH0fAAAAAADAJE262bG4tqlRa313KeXsJIdLKV+utf6TCecBAAAAAAA73JMmXO/Aye+otd5fa31LkptLKR8vpbxhwpkAAAAAAMAONtFmx2b7btRab6+1vibJuaWUD5RSLpxkNgAAAAAAsDNNembHlmqt1ya5KsnbSynv7J0PAAAAAACcXia6Z0cp5Ze2sy/HMAPkLaWU/aWU65P8m1rrH0xyLAAAAAAATMDScLA+12YmTHpmxy+fysm11oVa6xVJSinlY6WUiyc8HgAAAAAA4DQ30ZkdSfYODYuvJDknyZ7hdm54+9zhdu6k+/cMj18opRxJ8vZa6wMTHhsAAAAAAHAamnSzI0kWtnFO2eS+tyS5NMnzJjMcAAAAAADgdNai2bFRI+NEkuNJFte8fSLJfSe/r9b6lQbjAgAAAAAATkMtmh1XZ6V5oXEBAAAAAAA0N+lmx4la67UTrgkAAAAAwLQsDwfrc21mwpMmXO/yCdcDAAAAAADY1ESbHbXWmydZDwAAAAAAYCul1jrtMbCJUsr5Se5KkoNJzm6Y9Su/0LD4qq83rv/CxvWT5NIOGf+4Q8Z5HTJ+ukPGv21c/6HG9ZPkjA4ZT+mQsbtDRms3dsh4VoeMH+uQ8cUOGS/okPGpxvXvaVw/SV7aIePhDhkf/nz7jMMvalv/RNvySZLvdMiY9Nzv9XyyQ8ZS+4gv3d62/g+9q239JMktHTIWO2T0eH59XoeMRxrXf1nj+knyv3bIOKdDxgUdMu5qXH9P4/pJn9cIHX6e59wOGc/vkPHyxvXf37h+0uxzcfd/SS7414/+84Ja691tkk4va/8uedebk/OfMeUBzbC7H0wuuO7Rf/oam5Iev8oAAAAAAAA0o9kBAAAAAACM2q5pDwAAAAAAgBm2lD7Lyo2VazMTzOwAAAAAAABGTbMDAAAAAAAYNc0OAAAAAABg1DQ7AAAAAACAUZtYs6OU8uZSyvsmVQ8AAAAAAGA7dk2w1tuT1AnWAwAAAABg2paTLE17EDNsedoDIJnsMlZzSU6sd0cp5b5SynsnmAUAAAAAAJBkss2Oxaw0PNazN8m5E8wCAAAAAABIMtlmx81J9pRSfnKCNQEAAAAAADY1yT07Dia5IsmNpZQTWZnpsdZlpZQ7tlmr1lr/6wmODQAAAAAAOE1NrNlRa72/lHJhkuuSvDHJgZNOKUn2bbfcpMYFAAAAAACc3iY5syO11vuTXJ4kpZSLkuzJSpPjM0luSvL2SeYBAAAAANDY8nCwPtdmJky02bFWrfUrq2+XUpLkRK319lZ5AAAAAADAztSs2XGSA0lOdMoCAAAAAAB2kC7NDjM6AAAAAACAVp7UO7CUcmEp5X2llFtLKfcNt+8tpby491gAAAAAAIDx69rsKKW8M8mxJFdnZWmrvcPtW5LcVkp5b8/xAAAAAAAA49drz47VRsehrOzdcU2SW5MsJplL8pokVya5upRyTq31p3qNCwAAAACATSwNB+tzbWZCl2ZHKeXVWWl03JZkvtZ6/5q7b0/ywVLK4eH+y0spR2qtn+wxNgAAAAAAYNx6LWN1KElNcvlJjY5H1VoXk7w6ScnKMlcAAAAAAABb6tXsuCTJYq31zs1OqrUuZGWZqwM9BgUAAAAAAIxfrz079mRlY/LtOqfVQMbsDUn+q5YBn25ZfPAPGtf/ROP6SfLZDhkPdsho/blIkjs6ZLy0cf1/0bh+kvzTDhl/0iHjuR0yvtO4/msa10+SCztkPKtDxjM6ZHy4Q8a5jes/1Lh+0ud7b7FDxntf1D7j0L1t6z+vwzffz7ePyIkOGT/bIeML7SN+6HjjgB6vCec6ZDy/Q8bp8lqn9Y+RJzeunyQv7JDR43XIKzpktH5+/Uzj+knyjzpkfKRDxsMdMl7QIeNDjev3+N77WqO6325UF5gpvZodtyfZX0rZXWt9YKOTSikXZaUxclOncQEAAAAAsJmaZHnag5hhddoDIOm3jNWRrOzFcc0W592QlS+NG5qPCAAAAAAAOC10aXbUWq9JcnOSy0sp/6GU8spSyu4kKaVcWEp5QynljiT7kyzUWq/rMS4AAAAAAGD8ei1jlSSXJbkxyauTHE2SUsra+0uShSTzHccEAAAAAACMXK9lrFJrvb/WemmSK7KyxXNZc9ye5FCt9ZJa6/29xgQAAAAAAIxfz5kdSZJa641ZmeGRUsrZmhsAAAAAAMAT0b3ZsZZGBwAAAADAjFsaDtbn2syEbstYAQAAAAAAtKDZAQAAAAAAjJpmBwAAAAAAMGqaHQAAAAAAwKhpdgAAAAAAAKO2a9oDAAAAAABghi0NB+tzbWaCmR0AAAAAAMCoaXYAAAAAAACj1qXZUUrZXUp5QynlwnXu+6VSyh2llPtKKf9mvXMAAAAAAAA20mtmx9VJbkgyv/adpZT3JTmcZF+SvUmuSPJlDQ8AAAAAAGC7ejU73jTcXr/6jlLKS7LSBEmSy7LS7HjPMKZ3dRoXAAAAAAAwcrs65cwlWai1PrDmfasNkKO11j8Y3j5USnlbkks7jQsAAAAAgM0sDwfrc21mQq+ZHXuSHD/pffNJalaWt1prcTgfAAAAAABgS72aHSeSnLP6j1LK2Un2D/88usH5AAAAAAAAW+rV7Lgtyf5SysXDv68abhdrrXeunjQ0QeayMrsDAAAAAABgS7327Dic5NVJFkopq++rSQ6ddN4Vw/s/0GlcAAAAAADAyHWZ2VFrPZrkLUkeSFKS3J/kijUbk696+3B7TY9xAQAAAAAA49drZkdqrddkiyZGrXVfKeWiWusDnYY1Kr+TZHfD+u/86YbFV32+cf0zG9dPkm90yPiJDhm/3iHj4q1PeaJuur5t/Ut/p239JMnPdMi4v0NGh8935tuW/9pvt62fJN/f478ZNL5OSfosOPmsDhnPa1z/643rJ8nvdch4doeMF3XIuLDxF9Wd325bP0me9bT2GRe0j8hd7SP+8//bPuPhxvV/oMfP2ud2yFjokNH6k5HkS+9onzHXuP6Zb20ckOS+D7bPOPc57TOy3CHjxrbllx5qWz9JzvhS+4wHvtI+Y/d/0z4jD3bIWGpc/5bG9ZPktY3q9vh70eluOe2/xsasx/MGW+q1Z8e21Vo7PI0BAAAAAACni5lrdgAAAAAAAJyKbs2OUsqrSikfK6UsbeP4/3qNCwAAAAAAGLcue3aUUt6YZHVl/bKdhzQcDgAAAAAAcBrptUH54aw0MBaSHMrKtqbHO2UDAAAAAACnsV7NjrkktdZ6Sac8AAAAAAAmYWk4WJ9rMxN6NTsWk3yzUxYAAAAAALCD9Nqg/OaszO4AAAAAAACYqF7NjkNJ9pZSfqNTHgAAAAAAsEP0WsbqwiRXJzlSSrksyQeTHNvsAbXW6zqMCwAAAAAAGLlezY6FJHV4+weTHNzGYzQ7AAAAAACALfVqdtyex5odAAAAAACMxfJwsD7XZiZ0aXbUWg/0yAEAAAAAAHaeXhuUAwAAAAAANKHZAQAAAAAAjJpmBwAAAAAAMGq9NihPKWV3kiuSHEgyt8Xptdb6uvajAgAAAAAAxq5Ls6OUcnaSxSR7kpRtPKS2HREAAAAAANuynGRp2oOYYcvTHgBJv5kdNyTZO7x9TZJjnXIBAAAAAIDTXK9mxyVZma1xoNb62U6ZAAAAAADADtBrg/I9SRY1OgAAAAAAgEnr1ey4uVMOAAAAAACww/RqdhxOsq+U8spOeQAAAAAAwA7RZc+OWuvRUsrbkxwtpRxOcn1WlrV6oEc+AAAAAACP0/JwsD7XZib02qA8SY4luT/JoeFIKWWjc2uttefYRuGXL0/OP6thwK81rN0r4/2N6yfJeztkfLpDxhc6ZPz37SMufUvjgF9oXD9J/lOHjE91yNjfIeNn2pa/q235JMn3/1GHkB4+0iHjSx0y7mtcv8d/6/g7HTLO65Dx5A4Zv9G4/gVPaxyQ5N5vts+4dm/7jA+3j/i+V7TPyPsa1//rjesnyW91yDi7Q8YPdYh4VvuMHGxc/4uN6yc59/fbZ3R5HdLhWqXxz6kzenzNXtY+YvdC+4zc2yFjqUPGixrXf2nj+kny3ee+ZQAAIABJREFUfzWq+0ijusBM6dJQKKW8MSuzOZJkww7H2oc0HA4AAAAAAHAa6TV74nBWGhgLWZnVsZjkeKdsAAAAAADgNNar2TGXlaWpLumUBwAAAAAA7BC9mh0nsrJnBwAAAAAAY7KUPnvPjJVrMxOe1CnnhqzM7gAAAAAAAJioXs2Og0lKKeU3OuUBAAAAAAA7RK9lrC7KysbkR0opVye5PivLWp3Y6AG11us6jQ0AAAAAABixXs2OhSR1eHtvkqu28RjNDgAAAAAAYEu9mh2357FmBwAAAAAAwMR0aXbUWg/0yAEAAAAAYMKWhoP1uTYzodcG5QAAAAAAAE1odgAAAAAAAKOm2QEAAAAAAIxalz07SimnumpZrbX22jwdAAAAAAAYsV4NhdL4fAAAAAAAYIfq1ezYu8X95yS5NMm7ktxUa31T+yEBAAAAALClmmR52oOYYXXaAyDp1Oyotd6/xSn3J7mmlHI0yR2llItrrZ/rMDQAAAAAAGDkZmqD8lrrYpKbk7xl2mMBAAAAAADGYaaaHYPFJJdMexAAAAAAAMA4zGKzYy7J/mkPAgAAAAAAGIcue3aUUt68zVP3JZlP8s2GwwEAAAAAAE4jXZodSa7Jqe1Jf02rgQAAAAAAcAqWhoP1uTYzoVez4/Zsr9mxmOSmWuu1jccDAAAAAACcJro0O2qtB3rkAAAAAAAAO0+vmR1Mwp8neXLD+pc0rL3qTxrX39O4fpJ8pEPG0ztk9Fgs7twOGV9tXP/sxvWT5Pc7ZPxZh4xPdMg43rb8U9uWX/HhDhkPdsjoMUX3jg4Z9zauvzjXOCDJzy22z/h0+4g8q0NG6++NHs97L97bPuM97SPS4cs253XIuLtx/U81rp8kJzpkPKVDxuc7ZPR4fj3auP5C4/pJ0uGpL2d0yOjxNXVh4/rfaVw/Sd7fIeNJHTK+0SGjx8fxxcb1ezy3tvr+7nH9obFSymVJrs7KK7g9w+07a61P6Bm+lHJwqHtOVv7yspDkUK21x6v2idLsAAAAAACAGVVKOZzksiQHaq0nhvftT3JzKeXKWuuNj7PuDVn5r0gHaq0nhpo3JDlWSjlUa333hD6ELvQ1AQAA4P9n7/6DNb/u+rC/D7qSbRRZqxWyhS3Hyl3AwuAYdiWcuHE92FdxMTTUsJKaSdoMUyQFCrSdDNqQhPRHmrgrN5DStJNdwdBCaEc/PExbCgNaw5i4pkbW2sTE2DFa5Mooch2t1lYtZCn3nv5xv1e+Wj332V/POc/3u/f1mvnOd/c+3+fzPvvde+/z3P3sOQcAYIRKKWtJ7kpyy1ajI0mGGR2HktxfSjnn9W6GBsrJWuuhrbpDza0tKQ4P2ZOxsJkdpZR3LKpWktRaeyyIAgAAAADAPOvps5zxVLW9N0eSnNphuar7hsfvSXLL2RYcmiN31Fpfsk7uMMPj7mw2WO5P0mEt3cVY5DJWx5LUBdWqscQWAAAAAAC7VCllNZs7Ys3cfXdoTJzI5hJX52It83cLezCbzY49pZTVqezfsciGwseyuGYHAAAAAADsZlvLSJ2ac82JJKullLVa67wGxnY3JTlYSnmk1rpvh5pb9p/2+9FaWLOj1nrgzFcBAAAAAABn4eazuGarEbI/82drzLJaStk/Y4ms7XuAzGu0jIqlogAAAAAAYDGuLaXMvaDW+rmzrLU6nJ+cc83J4TxrhsZOjiS5I8lHd9gLZHXbrycxqyPR7AAAAAAAgEV56Cyumd8N+aqtGRYLnV0x7MExb+Px24bz8ans15EsodlRSrk+yaEkN2azQ3Qim58AR2utH+89HgAAAAAA5qhJNpY9iBFrt5P13kbX7mjYFH1rw/PbF1Gzl67NjlLKe7O5i/v2ztWB4bizlHKk1vrDPccEAAAAAAALclOSJ5aQu+fMl5yVI8P50A5LXI1Wt2bH0Og4lM0pN0ezOZvjRDZnd/zFbHaJ7iyl7K21/vu9xgUAAAAAAAvyxDnsyXEmJ3P2TYwLXuqqlHJHkrVsrsJ094XW661Ls6OU8s5sNjoeTrJWa/3itoc/luT9pZTDw+O3DDM8fqvH2AAAAAAAYITOpYFx8syX7KyUsifJ4Ww2Ou68kFrL8jWdcg5lc+WyW05rdLxg2Ojkndlc4mqSNxMAAAAAABZkq4Exb3bH1l4dFzqz4+Ek90210ZH0a3bcmORErfXReRcNa4CdyuYeHgAAAAAAsFudGM5Xz7lmqxHy0PmGlFLuT3Jsyo2OpN+eHXuSPHIO1y9k53gAAAAAAC7Q+nAwW7t78/BwnjezY3U4HzufgGF7icxqdJRSDiY5VWs9r9q99ZrZ8bEk+0spr5x3USnlz2TzL+6jXUYFAAAAAADjdN9wvnHONavZXFXpnJexGpoZq7XWW3a45LZ8dXbJ6PVqdhzJ5l4cR89w3f3Z3Nvj/uYjAgAAAACAkRoaGA9kcyLBS2Z3lFLWhl8envHYainlwVLKkVm1Syn7h+cdKaXsP+1YGxoha8Ne25PQZRmrWuvRUsotSW4ppaxmc8Pyh2utXyqlXJ9k68buGz7+sz3GBQAAAAAAI3Z7krVs/vv56UtNHU5yvNY6a5LBncPzUko5MuyXneH3e5J8IJurLD04J3syjY6k354dSXIwm12od2ZYP6yUsv3xkuR4hr8AAAAAAADYzWqtp0opB5JszdI4ks09rw8lOVlrvXmHp96bzX+TP7G90TE4nPn7gGzR7Jil1vrFJDcP019+Ism3b3v4eJJ7a63v6zUeAAAAAAAYu2EpqX3DslVrSU4lOTSjibH9OcezuZLSrMfuzEtniUxez5kdSZJa6wPZnOGRUsqVQxMEAAAAAIAx2hgOZut0b2qtxzKsmsRL9dqgfCaNDgAAAAAA4EIttdlxulLK9aWUVy57HAAAAAAAwHQsbBmrUsqfSfIbSR5Jcmut9Uvn+PxvT/Jwko8m+Y5Fjeti8tCnk882rP9vffuZr7lgjzWuf0nj+kny5fYRn/rl9hk3tI/oE/KGxvU/0bh+kvxqh4zHO2Tc2iHjZW3Lf9uPta2fpP33wSR5fYeMHluUPdMhY+bqpQv0bR1u1H/UPiIf7JDxbIeMd7Ut///8vbb1k+RPf2v7jHy8Q8Zqh4wnOmRc2rj+xbJURI/36K/pkHFXh4yjjetf0bh+kqf+SfuMq97TPqPL59TF4Ln2EfX/bJ/x+fYRubbDe/TnWv6jUZLLWr/uJclbGtXt8VoELN0iZ3YczOY/GZRzbXQkSa31Y0nen+RAKeU7FzguAAAAAADgIrbIZsfNSWqSwxdQ41CSkotwJ3gAAAAAAKCNhS1jlWEyeq31N8+3QK31RCklab+oBAAAAAAAZ2N9OJjNvRmFRc7s2Jvk1ALqnEifVXwBAAAAAICLwCKbHXuSnFxgLQAAAAAAgDNaZLNjUTMyVodaAAAAAAAAZ7TIZsfHkqSU8p7zLVBK+f7hl8cXMiIAAAAAAOCit8hmx5EkJck9pZQrzvXJpZQrk9yTpA61AAAAAAAAzmhlUYVqrcdKKR9L8u1JPlBKeWet9emzeW4p5ZVJPpDkyiTHaq2/uahxAQAAAABwATaSrC97ECO2sewBkCx2ZkeS3JLkVJIDSR4tpfyNoZExUynllaWU9yZ5KptNklNJ7lzwmAAAAAAAgIvYwmZ2JEmt9UQpZS2bszSuSnJ3krtLKQ9kc9PxR4ZL9yXZn2Rt+H3JZqPjxlrro4scEwAAAAAAcHFbaLMjSWqtx0sp1yf52SRbG44f3OHyMpwfSHJ7rfWLix4PAAAAAABwcVv0MlZJklrrF2utt2RzBsc9Sf4om42N7ccfJTmaZF+t9VaNDgAAAAAA4HwsfGbHdrXWP8q2PThKKVcm2Tt8HAAAAACAsduITbjncW9GoWmz43TD7A0zOAAAAAAAgIVpsowVAAAAAABAL5odAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATFrXDcoBAAAAAJiY9eFgNvdmFMzsAAAAAAAAJk2zAwAAAAAAmDTNDgAAAAAAYNI0OwAAAAAAgEmzQfmE3HRLct3lDQM+1LD2ln/Qtny9tW39JCn/afuMG65on5Gf6pDx3R0yfqxt+T/+XNv6SfLa/6N9Rh7pkPHvdsj4hbblH/6ZtvWT5MDPtc/IazpknOyQsdoh40Tj+m9oXD9JerxmfG+HjCs7ZFzWtvyf3tu2fpLkBztkvLFDxic7ZPz8Q+0z3npT2/pvbls+SfJsh4znO2Rc2iHj6Q4Z997ctv5/92Db+kmuavxlkaTP5+2HO2R8W+P6Pd4TrrWPKN/XPuPaB9pn9PheeNn3NA7Y37h+kvxko7o2j4ZdQbMDAAAAAICdbUTTaJ6NZQ+AxDJWAAAAAADAxGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKStLHsAAAAAAACM2MZwMJt7MwpmdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpmh0AAAAAAMCkaXYAAAAAAACTtrLsAQAAAAAAMGLr8d/m51lf9gBIfIoCAAAAAAATp9kBAAAAAABMmmYHAAAAAAAwaZodAAAAAADApGl2AAAAAAAAk7ay7AEAAAAAADBiG8PBbO7NKJjZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJOm2QEAAAAAAEzayrIHwDnYGI5GnvrDdrW3XPWrbet/oW35JMmrfr9DyGc7ZPzjDhmPd8j4lbblX7u3bf0kyd/pkHFDh4zv/472GSd/t2n5X2tafdOBDhn5cIeMj3bIeLZDxmsa1+9xn/Z0yHi0Q0aP14zVtuWfO9m2fpJcdrx9Rj7eIeNEh4yfuKl9xoePta3/9rW29ZPkmfYRXax3yPhkh4zHHmxbv/HPY0mSSztkvLxDRo8fLj/SuH7j170kyRUdMj7YIeOSDhmf6pBxqnH9RxvXT9p9Tj3fqO5uspE+r7dT1fDfbDl7ZnYAAAAAAACTptkBAAAAAABM2q5dxqqUcleSm4ff7k1yMsnhWuvcueillINJ7szm5MA9w/m9tdYeiwoAAAAAAACn2ZXNjlLKw0mO1Fpv3vaxI0keLKU8UGu9ZYfnHU5yMMmBWuup4WP7k3yglHJ7rfWBDsMHAAAAAAC22XXLWA1NjSO11qPbP15r3ZqtcbCUcseM560luSvJLVuNjuF5x5McSnJ/KaXHFqEAAAAAAMA2u67ZkeTWJIeG5sXpTgznWTM7jiQ5tcNyVfcN53sWMD4AAAAAgPFYd5zxYOl2Y7NjT5LVbO67cbqTw3l1+wdLKavDx+57yTOSDDM9TmRziSsAAAAAAKCj3djsuDuby1UdmfHY3uF8+uyNrVkgp7KzE8kLy10BAAAAAACd7LpmR631UK31qlrrse0fH/bb2D/89r2nPe3mnNlWI2T/3KsAAAAAAICFWln2AEZka1PyozP25dha1urJOc/fWgJr37mEllKuO8Ml155LPQAAAAAA2G00O/LC0lM/keTuWuuhGZfsGc7zlrE6X481qAkAAAAAALvGrm12DJuOH87mslOrSY7mpctXbdm7w8cv9FoAAAAAgHHbGA5mc29GYdc2O2qtJ5LckrywX8f9SZ4qpdxZaz16AaX3nPmSF3ndGR6/NslD5zkWAAAAAAC46O3aZsd2tdZTSW4upTyV5EgpJac1PE7m7JsY57TUVa31c/MeL6WcSzkAAAAAANh1vmbZAxiZrQbHkWG2x5ZzaWCcPPMlAAAAAADAomh2vNj25aJu3fbrrQbGvNkdW3t1tNjEHAAAAAAA2MGuanaUUtZKKQ+XUg7vcMn2RsWBbb8+MZyvnlN+qxFifw0AAAAAAOhot+3ZcTjJ/iT7SylHhk3Kd/LItl8/PJznzexYHc7HLmB8AAAAAADjspFkfdmDGLGNZQ+AZJfN7MiL99OYtbfG/m2/Pr7t1/cN5xvn1F5NcmLY7BwAAAAAAOhktzU77s9mE+PADk2Jm4bz8VrrCzM0hmsfyOaMkJfM7iilrA2/3Gl5LAAAAAAAoJFd1eyotR7N5oyOl8zQKKXsT3Jw+O0tM55+ezb39JjV0DiczQbJ0QUNFQAAAAAAOEu7qtmRJLXWm5Ps29qovJRycNiw/OFs7rdx1ay9PIbZHQeSrJVSjpRS9g8bnj+Y5GSt9cDpzwEAAAAAANrbbRuUJ0lqrYeG5ahuzOY+HQ8l2XeGDcszPL5vWLZqLZszPQ7VWo/Pex4AAAAAwGTZnHw+92cUdmWzI3lhpsax4TjX557X8wAAAAAAgMXbtc2OKfqD9ydPNaz/pu9vWLyTV71kN5YG3tUh4/kOGdd3yPiLHTIu75DR2vd0yPjtDhn/y++2z/grbcv/wP/Utn6S5MkOGdd0yHh9h4yTHTIeb1z/scb1k+S5Dhlv75BxbYeMU23LX/a6tvWT9Pn6fmOHjHs7ZHymQ8Yla23rr3f4JvK2Dp+4L28f8VSH/4p21bvbZ+SZxvV//fbGAUled0/7jP3tI7pk7G1cv/XnU5Ksdsj4RIeMHm7rkNH6/dRDjesn7d7b/ptGdYFR2XV7dgAAAAAAABcXzQ4AAAAAAGDSNDsAAAAAAIBJs2cHAAAAAAA720hSlj2IEdtY9gBIzOwAAAAAAAAmTrMDAAAAAACYNM0OAAAAAABg0jQ7AAAAAACASdPsAAAAAAAAJm1l2QMAAAAAAGDENpY9gJFzf0bBzA4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYNM0OAAAAAABg0laWPQAAAAAAAEZsY9kDGDn3ZxTM7AAAAAAAACZNswMAAAAAAJg0zQ4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmbWXZAwAAAAAAYMTWk9RlD2LENpY9ABIzOwAAAAAAgInT7AAAAAAAACbNMlYT8nyS51oGfLJl8cEPNa7fY8rYr3TIWO+Q8aMdMt7eIePXG9d/f+P6SfKTHTKu7ZDxX3fI+Ktty7/2T7WtnyT5mQ4ZN3XION4h41SHjHc1rv+6xvWT5A87ZPxyh4wf6JDxTOP6q43rJ8lPd8jo8Xnb4+v7iQ4Zr2lc/9s6/GV8/F+1z/i/v755xFVfah6RP/n77TNe8frGAQ/e0zggfb6HfKRDxi91yPj3Gte/pnH9JDnaIaPH51SP14we79le3rh+j3+reHejuv9fkv+5UW1gNMzsAAAAAAAAJk2zAwAAAAAAmDTLWAEAAAAAsLP1JHXZgxixHkvrc0ZmdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpmh0AAAAAAMCkaXYAAAAAAACTtrLsAQAAAAAAMGI1ycayBzFiddkDIDGzAwAAAAAAmDjNDgAAAAAAYNI0OwAAAAAAgEnT7AAAAAAAACZNswMAAAAAAJi0lWUPAAAAAACAEVtPUpY9iBGryx4AiZkdAAAAAADAxGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKStLHsAAAAAAACM2HqSsuxBjFhd9gBIzOwAAAAAAAAmTrMDAAAAAACYNMtYTcif/brkuksaBjzdsPaWtzeu/wuN6yfJFR0y3tgh460dMh7rkPGGxvUfaFw/af91kSRf7pBxZYeMxxvX/0rj+klyU4eMHt+nXt8ho8fn7Xrj+l/buH6SvLxDRuvvtUnyyQ4ZrV/7PtW4ftLna+8bO2T0+Pu+pkPGZxvX7/Hamn3tI/7cv2qfcfXXN494xcuaRyTf2rj+M43rJ8neDhk9Xvtav+9Mktc2rt/6fU6SvKZDxjd0yHiuQ8aJDhmtfw64vnH9JHm0Ud0/aVQXGBUzOwAAAAAAgEnT7AAAAAAAACbNMlYAAAAAAOysDgeMmJkdAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGk2KAcAAAAAYEfrw8Fs7s04mNkBAAAAAABMmmYHAAAAAAAwaZodAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATNrKsgcAAAAAAMB4rQ8Hs7k342BmBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpK8seAAAAAAAA47UxHMzm3oyDmR0AAAAAAMCkaXYAAAAAAACTptkBAAAAAABMmmYHAAAAAAAwaTYon5A/+NfJUw3rv+nKhsW3/P3G9V/euH6SrHbI+OUOGW/skPGeDhn/tENGa090yDjRIeM1HTI+07b8l59vWz9JLn+ofUZu6pDxhQ4Zl3TIeHri9ZPk6g4Zn++QcUOHjA82rn+ycf0kua5DRofvhTnVIaPHn+O5tuXXf7tt/SS55F3PtA/Z+Pr2GQ/+QfuMt39z+4zGr69f+t229ZPkla9vn5G9HTJ+tkPGs43r97hPPX4G/7kOGdd0yOjxbwmtX/sea1w/ST71423qfu7p5HX/pE1tYDQ0OwAAAAAA2NFGkvVlD2LENpY9AJJYxgoAAAAAAJg4zQ4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYtJVlDwAAAAAAgPHaGA5mc2/GwcwOAAAAAABg0jQ7AAAAAACASdPsAAAAAAAAJk2zAwAAAAAAmDTNDgAAAAAAYNJWlj0AAAAAAADGa304mM29GQczOwAAAAAAgEnT7AAAAAAAACZNswMAAAAAAJg0zQ4AAAAAAGDSNDsAAAAAAIBJW1n2AAAAAAAAGK+NJOvLHsSIbSx7ACQxswMAAAAAAJg4zQ4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYtJVlD4Czd02SV7cMuKRl8cGHG9c/2bh+kvzl9hH159pn5PH2EeUb2mfkR9qWr3+jbf0kKX+lfUbe2CHjtg4Zt7Qt/+W25ZMkl7+rQ8hqh4zHOmT8UIeMxt9vn/vDtvWT5LK3t8/o8vf9lzpk/Ebb8v/v0bb1k+RVT7bPyF/rkPFEh4zv65DxT9uWv+TdbesnyZd/oX3G5Ze2z8hbv7l9xoe/0D7j717TtPwr39G0fJLkT/6b9hmveHP7jPX/vX3GJa1/Xrqpcf0k6fG61OG/6dZPt88oHb5N5YbG9U80rp8kN7yvTd3n25TdTTaGg9ncm3EwswMAAAAAAJg0zQ4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYtJVlDwAAAAAAgPFaHw5mc2/GQbMDAAAAAABGrJRyMMmdSU4l2TOc31trPT7Gusug2QEAAAAAACNVSjmc5GCSA7XWU8PH9if5QCnl9lrrA2OquyyaHQAAAAAAMEKllLUkd2VbQyJJaq3HSymHktxfSrlq+2PLrLtMNigHAAAAAIBxOpLk1A7LSt03nO8ZUd2l0ewAAAAAAICRKaWsJlnNV5sPLzLMujiRzaWoll532TQ7AAAAAADY0brjjEcja8N53lJSJ5IXlqVadt2l0uwAAAAAAIDxufksrtlqWOwfQd2lskE5AAAAAAAsxrWllLkX1Fo/d5a1Vofzk3OuOTmc951lzZZ1l0qzAwAAAAAAFuOhs7hmfjfkq/YM53nLTZ2PVnWXyjJWAAAAAAAwPnsndu1SmdkBAAAAAMCOapKNZQ9ixOqLf3tTkieWMIw9Z75kVHUXTrMDAAAAAAAW44lz2JPjTE7m7JsN57IkVau6S2UZKwAAAAAAGJ9zbWAsu+5SaXYAAAAAAMD4bDUa5s3C2NpT43waGIuuu1SaHQAAAAAAMD4nhvPVc67Zalg8NIK6S6XZAQAAAAAA4/PwcJ43A2N1OB8bQd2lskE5AAAAAAA7Wh8OZmt4b+5LciTJjXOuWU1yotZ6LstNtaq7VGZ2AAAAAADAyAyNhgeS7C+lvGQWRillbfjl4RmPrZZSHiylHFlk3TEzs2NCvu4tyate1jDg8Ya1t/xnjev/rcb1ky5t7HJr+4z8vQ4ZP9oh47Vtyz/btnyS5BU/1CGkx3+/uL5DxrVty3/+s23rJ8mr3tE+I5d2yPgPO2T8XoeM69qWv+zVbesnSd7cIWPexOZFOXnmSy7YG9uWf9XXta2fJPm7HTJe1yHj0Q4ZV3bIaP36Ou//2S3I5Y+1z8jzHTKu6JDxvmvaZ/xXT7Wtf89VbesnecVfbx7R5XXpkk+0z2j9uvQ/Hm1bP0l++JfaZ+RN7SPK29tn5Kc7ZOxvXP8fNq6fJN/VIQOm5/Yka9lsPNx52mOHkxyvtc76rn/n8LyUUo7UWo8vqO5omdkBAAAAAAAjNMzCOJBkrZRypJSyv5SyVkp5MMnJWuuBHZ56bzY3Ij82o9FxIXVHy8wOAAAAAAAYqVrriST7huWl1pKcSnJoVhNj23OOJ9m36LpjptkBAAAAAAAjV2s9luTYVOr2ptkBAAAAAMCONoaD2dybcbBnBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpK8seAAAAAAAA47WRZH3ZgxixjWUPgCRmdgAAAAAAABOn2QEAAAAAAEyaZgcAAAAAADBpmh0AAAAAAMCkaXYAAAAAAACTtrLsAQAAAAAAMF7rw8Fs7s04mNkBAAAAAABMmmYHAAAAAAAwaZodAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATNrKsgcAAAAAAMB4bQwHs7k342BmBwAAAAAAMGmaHQAAAAAAwKRZxmpCfv4jyVUN6//IjzUsvuVY4/pvbVw/SZ69SDJ+ukPGNR0y/lnb8q+4rm39JMndHTIe65DxVztkvLFt+Tdd0bZ+kuRXO2Ts6ZDxeIeMRztkPNO2/HOfbls/SS67vH1Gvtwho8drxqON6z/cuH6S/GiHjOs7ZJzqkPEP20c88ftt61/7t9vWT5Jc2iGjx/eQ1j9nJMl6h4xfa/kTX5Lf7PCm8IrXtc+4oX1Enu+Q8Zm25X/4O9rWT9L857Ekfb7o/nzIAAAgAElEQVS+e7xHf3eHjEca17+1cf0k/6LR++cn2pQFRsbMDgAAAAAAYNI0OwAAAAAAgEmzjBUAAAAAADtaT58VHafKvRkHMzsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYNM0OAAAAAABg0jQ7AAAAAACASVtZ9gAAAAAAABivjSTryx7EiG0sewAkMbMDAAAAAACYOM0OAAAAAABg0jQ7AAAAAACASdPsAAAAAAAAJk2zAwAAAAAAmLSVZQ8AAAAAAIDx2hgOZnNvxsHMDgAAAAAAYNI0OwAAAAAAgEnT7AAAAAAAACZNswMAAAAAAJg0zQ4AAAAAAGDSVpY9AAAAAAAAxmt9OJjNvRkHMzsAAAAAAIBJ0+wAAAAAAAAmzTJWE/ID35xcd1m7+v/yZ9rV3vJN39A44LON6yfJFzpkPN4+4o87ZLz2De0zms8T7PH3/USHjB/qkPG32kc896/b1r/sT7WtnyR5tkNGj/mz13bI+L32EV/eaFv/8j/ftn6S5Hj7iD/p8Pr6iqfbZ+Tlbcs/+vq29ZPk+u9sn5F7O2Sc6pDxve0jrm3853juYNv6SXLZd7fP6PHeNld2yPh0h4xLG9e/5nWNA5I8/ePtM65+X/uMHj/LfKZx/Xc1rp8kv9Yh46faR/yLv9Q+41v2tM9o/v65w9fFt7ysTd0ra5Ln2tQGxsPMDgAAAAAAYNLM7AAAAAAAYEc1SeOJ8ZNWlz0AkpjZAQAAAAAATJxmBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJOm2QEAAAAAAEzayrIHAAAAAADAeK0PB7O5N+NgZgcAAAAAADBpmh0AAAAAAMCkaXYAAAAAAACTptkBAAAAAABMmmYHAAAAAAAwaSvLHgAAAAAAAOO1PhzM5t6Mg5kdAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKStLHsAAAAAAACM18ZwMJt7Mw5mdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpmh0AAAAAAMCk2aB8Sq5J8vJ25b/puna1X3BH4/o/2bh+knxjh4xXt4947fvaZ+S9HTKubFz/s43rJ8kPdMg40SHjF9tHXPbjbev/s99vWz9J3vae9hktXytecMnFkXH53sYBzzSunyQH20e84lPtM/KVDhl/oW356x9rWz9J8qYOGbd2yLivQ0aP92yfbFv+su9pWz9J8niHjLd0yOjx/fbSDhmtv6d/sHH9JPlrHX7QePKB9hlv6/ACe33j+h9uXD9JPvVn22f8xD9vHvEta80jkis6ZLR+n9D6vXOS3NSo7leSPNSoNjAamh0AAAAAAOxoI8n6sgcxYhvLHgBJLGMFAAAAAABMnGYHAAAAAAAwaZodAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATNrKsgcAAAAAAMB4rQ8Hs7k342BmBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpK8seAAAAAAAA47UxHMzm3oyDmR0AAAAAAMCkaXYAAAAAAACTptkBAAAAAABMmmYHAAAAAAAwaZodAAAAAADApK0sewAAAAAAAIzXRpL1ZQ9ixDaWPQCSmNkBAAAAAABMnGYHAAAAAAAwaZodAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATNrKsgfA2fu/fju5pmH9d3xdw+JbLmlc//sa10+SKztkPNIh40iHjL/QIeNXGtd/c+P6SfI7HTIe65Dxv3XI+OTXNi3/tv/kmab1kyT/a/uIvKVDxhfbR3zpQ+0zXvmGxgFfblw/ST7TIaPtl96md3XI+M//g7b1P/SLbesnfb6ff6JDxqkOGf+4fcR64++Fl7ypbf0kyU0dMnp8L/xoh4weXxufbVz/NY3rJ8mzHTKuP9g+49Hfap/x1u9sW//ptuWTJHf98/YZHf4qsrdDxts7ZPxy4/o93nde0aiu/+59wTaGg9ncm3HwpQ4AAAAAAEyaZgcAAAAAADBpmh2nKaU8XErZf4ZrDpZSHiyl3L/tPPc5AAAAAABAG/bs2KaUcleSMzU6Dic5mORArfXU8LH9ST5QSrm91vpA+5ECAAAAAABbNDsGpZQ9SQ6f4Zq1JHdlW6MjSWqtx0sph5LcX0q5avtjAAAAAABTtj4czObejINlrL7qniQnznDNkSSnaq3HZzx237Y6AAAAAABAJ5odeWHGxkOZ0+wopawmWc1XmxovMszmOJHNJa4AAAAAAIBONDs2Haq13n2Ga9aG87wlqk4kLzRPAAAAAACADnZ9s2PYcPzQWVx681lcs9UImbvJOQAAAAAAsDi7eoPyYWmqPTvswXG61eH85JxrTg7nfecwhuvOcMm1Z1sLAAAAAAB2o13d7MjmhuO3nOW1e4bzvGWszsdjC64HAAAAALAwG0nWlz2IEdtY9gBIsouXsSql3JHkyLCx+NnYew7lz+VaAAAAAADgAuzKmR2llD1Jbq61nu2sjnO158yXvOB1Z3j82iQPXcBYAAAAAADgorYrmx1JznZT8u1O5uybGGe91FWt9XPzHi+lnG0pAAAAAADYlXbdMlallLUkp2qtJ87xqeeyV8fJM18CAAAAAAAswm6c2XGo1nrzeTxvq4Exb3bH1l4di97EHAAAAAAA2MGuanaUUvYnubGU8tQOl2w1Mj6wtXxUrfWq4WNbM0GunhOx9Xx7bAAAAAAAF4WN4WA292YcdlWzo9Z6PMlVOz1eSnkkyWqSdw7XbvfwcJ43s2N1OB8770ECAAAAAADnZNft2XEB7hvON865ZjXJiVqrZawAAAAAAKATzY4X23va+QVDA+OBJPtLKS+Z3TFsfJ4kh9sNDwAAAAAAOJ1mx2BoYGw1MVZ3uOz2bG4+PquhcTjJ8Vrr0QbDAwAAAAAAdrDrmx2llLuGvTq2b1p+pJTySCnl4e3XDrM7DiRZK6UcKaXsL6WslVIeTHKy1nqg49ABAAAAAIDssg3KZ6m13l1KOTprn41Zy1XVWk8k2TcsW7WWzZkeh2ZsaA4AAAAAMHnrw8Fs7s047PpmR/LCjI2z/vjw2LEkx5oNCgAAAAAAOCuaHRPydJKXtQz43pbFBx9uXH+jcf0kuaZDxlc6ZFzbIeMjHTJuaFz/kcb1k+QLHTKe7pDxlg4ZP/JM2/qPty2fJLmiQ8azHTIubR/xym9un9H8Xj3fuH6y805ji/T5Dhk9vjZ+6hfb1u/xd9HjNeOSiySjw3udL32xbf2rOnyvzX/bIeONHTJ6vPb1eP/c+nvhrY3rJ8ndHTK+tUPGbd/ZPqPH13hrPb4uXt0h4w87ZPzoz7bPeOAH29bv8W8urX7ke65RXWBUdv2eHQAAAAAAwLRpdgAAAAAAAJOm2QEAAAAAAEyaPTsAAAAAANjR+nAwm3szDmZ2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKRpdgAAAAAAAJO2suwBAAAAAAAwXjXJxrIHMWJ12QMgiZkdAAAAAADAxGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKStLHsAAAAAAACM1/pwMJt7Mw5mdgAAAAAAAJOm2QEAAAAAAEyaZgcAAAAAADBpmh0AAAAAAMCkaXYAAAAAAACTtrLsAQAAAAAAMF4bw8Fs7s04mNkBAAAAAABMmmYHAAAAAAAwaZaxmpB/52uT61q2p36+Ye0tf7lx/d9qXD9JrumQ8YkOGd/aIeOmDhlPN67/ZOP6SfLq9hH119pnlO9qn9H6+9Rzn2tbP0ku+472Gbm2Q8YTHTL2dMg41bh+j7+LHhmf7pBxskPGJxvX//XG9ZPk3R0y3tAh44MdMv6L9hFX/ceNA3q8J1ztkPFYh4xv7JDx5vYR9/6jtvVve3nb+kmS/R0yenxOPX4RZDxRGwck+b7SPuMr7SPu7fBe57abfrB9SOP/0vyp32tbP0lu+PONCltjCHYFMzsAAAAAAIBJ0+wAAAAAAAAmzTJWAAAAAADsaH04mM29GQczOwAAAAAAgEnT7AAAAAAAACZNswMAAAAAAJg0zQ4AAAAAAGDSNDsAAAAAAIBJW1n2AAAAAAAAGK+NJOvLHsSIbSx7ACQxswMAAAAAAJg4zQ4AAAAAAGDSNDsAAAAAAIBJ0+wAAAAAAAAmzQblAAAAAADsaCM24Z7HvRkHMzsAAAAAAIBJ0+wAAAAAAAAmTbMDAAAAAACYNM0OAAAAAABg0jQ7AAAAAACASVtZ9gAAAAAAABiv9eFgNvdmHMzsAAAAAAAAJk2zAwAAAAAAmDTNDgAAAAAAYNLs2TEl35Xk8nbln/yFdrW3XP3WtvXrL7WtnyTlyfYZWeuQ8Z72EX98sH3Ga//ttvX/5cfa1k+Sb/ov22eU69tnpPHXd5LkI43Lf65t/SR5259rn5G9HTL2dMi4t0PGG9uWr7/Rtn6SlNe0z8gdHTJ+p0PGX29c/0ON6yfJGzpkPNMho8f3qeMdMq5sXP8djesnySc7ZDzeIaPH59Tn20fc9o8aB/T4WaaHL3TIuKJDRsOf75MkbymNA5J85Fj7jL/T/gfk23p8D/nbHTL+ZtvyN3x32/pJkk83qvtvGtUFRsXMDgAAAAAAYNLM7AAAAAAAYEcbSdaXPYgR21j2AEhiZgcAAAAAADBxmh0AAAAAAMCkaXYAAAAAAACTptkBAAAAAABMmmYHAAAAAAAwaSvLHgAAAAAAAOO1MRzM5t6Mg5kdAAAAAADApGl2AAAAAAAAk6bZAQAAAAAATJpmBwAAAAAAMGmaHQAAAAAAwKStLHsAAAAAAACM1/pwMJt7Mw5mdgAAAAAAwC5TSjlYSnmwlHL/tvP+BdS9q5TySCnlqeF8fylldRFjnsfMDgAAAAAA2EVKKYeTHExyoNZ6avjY/iQfKKXcXmt94Dzr3p/kxFbdoeb9SR4ppRyqtd69oD/CS5jZAQAAAAAAu0QpZS3JXUlu2Wp0JEmt9XiSQ0nuL6XsOY+6h5OcrLUe2qo71DwwXHJ4yG5CswMAAAAAAHaPI0lODY2I0903nO85l4JDc+SOWuudpz82ND62ZnTcfy51z4VmBwAAAAAA7ALD3hmr+WpT40WGxsSJbC5xdS7Wkhyb8/iDw3lPq/077NkBAAAAAMCONoaD2U67N9eWUuZeX2v9XMPhnMnWMlKn5lxzIslqKWWt1jqvgbHdTUkOllIeqbXu26Hmlv2n/X4hNDsAAAAAAGAxHjqLa+Z3Q9q6+Syu2WqE7M/82RqzrJZS9s9YImv7HiDzGi3nzTJWAAAAAACwO2wtIfXknGtODudZMzR2ciSbTYxjO+wFsn3pqoXP6kjM7AAAAAAAgEW5KckTyx7EHFszLBY6u6LWeiLJVXMuuW04Hx+uXTjNDgAAAAAAWIwnlrwnx5nsbXTtjoYNybc2PL99ETVn0eyYkg8muaRd+asvbVf7BZ9oW/75tuWTJJc92yGkh/+hfcRrX9M+I7/Ttvw3vb5t/STJb3bI+EyHjA93yPh02/Jfblt+08c7ZLy8Q8bJM19ywf77Dhl/s2350uF7yJPvb59xdZP/c3Oaazpk/Hjj+gv5MeAMfqtDxqMdMq7okPGhDhmtf4T91cb1kxcvJjBljd8TJunzRqF1Ro/v5z3eh8xbdGNRevxw2fDn+yQvXhm9ldW1M19zoe5sH9Hlte/WDhlvaVz/scb1k0ar+CdZb1QXLn6LejU5MpwP7bDE1UJodgAAAAAAsKON6BnNs7HsAZybkzn7JsYFtyBLKXckWUtytNZ694XWm0ezAwAAAAAARqaUsicXOBd3xkyKc2lgXNC6DsP4D2ez0dF8rp5mBwAAAAAAjM8dufAF/fad9vutBsa82R1bi/Re6MyOh5Pc16PRkWh2AAAAAADA6AzLPi166aetXbyunnPNViPkofMNKaXcn+RYr0ZHknxNryAAAAAAAGCpHh7O82Z2bC2ddex8Akoph5NkVqOjlHKwlLJ2PnXPRLMDAAAAAAB2h/uG841zrllNcqLWes7LWJVSDiZZrbXessMlt+Wrs0sWyjJWAAAAAADsaH04mG1K96bWeqqU8kCSg6WUPac3NLbNujh8+nNLKatJjmSzETJr1sb+4Xl3Dr/ebm82Z5Os1Vo1OwAAAAAAgAtye5K1DI2J0x47nOR4rfXojOfdOTwvpZQjtdbjWw+UUvYk+UA2GxoPzslu0uhILGMFAAAAAAC7xjCb40CStVLKkVLK/lLKWinlwSQna60HdnjqvdlsVhzb3ugYHM78fUC2NGt2mNkBAAAAAAC7yLCU1L5h2aq1JKeSHJrRxNj+nONJ9u3w2J156SyRrjQ7/v/27i5GziytD/j/ZJplEwLq8WRhJHYD6hEKgkQobY+QEFzAtgX5UCIFe1EkkihSxnMVkis7q9yg3Kzsm1xGniEiSoKiXVtc5SKJPUSKEBGasSO0RIoE7oXsAENWYzu7AYbd7T65qLemyz1V1W2734/T/ftJperueus8x6/9tN96n/MBAAAAAABnUK31bpK7Y/fjJFjGCgAAAAAAaJqZHQAAAAAArLTfPVjOuZkGMzsAAAAAAICmKXYAAAAAAABNU+wAAAAAAACaptgBAAAAAAA0TbEDAAAAAABo2sbYHQAAAAAAYLr2k+yN3YkJ2x+7AyQxswMAAAAAAGicYgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDTbFAOAAAAAMBKe7FB+TrOzTQodrTkcZLSY/sXemx77mv9Nv+x7+m3/STJDwwQ41cHiHFlgBi/NECMnX6b/1//rN/2k+T7f7j/GHk4QIy/NUCMn++3+R/rt/mZvzlAjDcGiPGTA8T4VwPEeL/n9r+t5/aTvPRP+4+RbwwQ4xMDxPgHPbf/T3puP0leHSDGzw0Q4x8PEOMf9R/i9/57v+1/9wB/hvzLAWJ8aoAY3zJAjB8aIMb39dz+T/TcfpL84gAxtgeI0XN+J0le7rn9zZ7bT5J/OECMxwPE+NgAMf7SADE+3nP7Q/ybAngOlrECAAAAAACaptgBAAAAAAA0TbEDAAAAAABommIHAAAAAADQNBuUAwAAAACw0n73YDnnZhrM7AAAAAAAAJqm2AEAAAAAADRNsQMAAAAAAGiaYgcAAAAAANA0xQ4AAAAAAKBpG2N3AAAAAACA6dpPsjd2JyZsf+wOkMTMDgAAAAAAoHGKHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAAJq2MXYHAAAAAACYrv3uwXLOzTSY2QEAAAAAADRNsQMAAAAAAGiaYgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDTNsbuAAAAAAAA07XXPVjOuZkGMzsAAAAAAICmmdnRkEffTP5sj+2/9Fs9Nj73kz23/4c9t58kfzxAjG8ZIMavDhDjdwaI8e/7bf77P9lv+0mSXx8gxjcGiPFLA8T4kX6b/7Yhcu/2ADF+eIAYXxkgxjsDxPiuntv/oOf2k+T+ADGG+Pv+OwPE2Oq5/e2e20+SPzdAjF8YIMa3DxCj52uEJPlE3wG+2HeAJD/Wf4j3/kP/MV7+8f5jDHL9/LDn9v9Kz+0nyYUBYvzKADH++QAx+v49NcT/3z86QIxfHCBG77/Qk/zyAB8EfvZSv+1/rd/mkyTf21O7X0/yqKe2gckwswMAAAAAAGiaYgcAAAAAANA0xQ4AAAAAAKBp9uwAAAAAAGClve7Bcs7NNJjZAQAAAAAANE2xAwAAAAAAaJpiBwAAAAAA0DTFDgAAAAAAoGmKHQAAAAAAQNM2xu4AAAAAAADTVZPsj92JCatjd4AkZnYAAAAAAACNU+wAAAAAAACaptgBAAAAAAA0TbEDAAAAAABommIHAAAAAADQtI2xOwAAAAAAwHTtdQ+Wc26mwcwOAAAAAACgaYodAAAAAABA0xQ7AAAAAACApil2AAAAAAAATVPsAAAAAAAAmrYxdgcAAAAAAJiuve7Bcs7NNJjZAQAAAAAANE2xAwAAAAAAaJplrBry4k8nL31bf+3v/dv+2p574Xv6bf+rP99v+0nyHef6j5GXBojx9/sP8f6/7j/GSz/eb/v/5zf7bT9JvvMn+o+RXxsgxt8eIMbn+m3+3/2PfttPkr/3c/3HyHcNEOMbA8R4e4AYWz23/07P7SfJ9w4Qo+/zlCS/MkCMvnPj93tuP0l+eIAY3zdAjP84QIwf7T/Exx72HOC7e24/Sb7Yf4iXf7r/GPlggBgvDxDjr/Xc/m/03H6SvDBAjJ8dIMbtAWJs9tz+ENdr5/9T/zFu/1T/MYbwM5f6j9H376kh/k39Xk/tDtF3YHRmdgAAAAAAAE1T7AAAAAAAAJpmGSsAAAAAAFaqSfbH7sSE1bE7QBIzOwAAAAAAgMYpdgAAAAAAAE1T7AAAAAAAAJqm2AEAAAAAADTNBuUAAAAAAKy01z1YzrmZBjM7AAAAAACApil2AAAAAAAATVPsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaNrG2B0AAAAAAGC69rsHyzk302BmBwAAAAAA0DTFDgAAAAAAoGmKHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE3bGLsDAAAAAABM1173YDnnZhrM7AAAAAAAAJqm2AEAAAAAADRNsQMAAAAAAGiaPTta8odJPt5f84NUvn673+a/48/3236S5NwAMR4OEONu/yFe+qv9x+h7UcTv/Av9tp8k+fIAMbYHiPHLA8T4jX6b/95+m5/5YIAYvz9AjCF+T31igBi7Pbc/RO4N8TvkGwPEGOJc9fw7ZJD83h8gxv0BYrw3QIy+83sIQ/wZhlhg+isDxBji99QQMf56z+3/l57bT5KtAWL81wFifG2AGN/ab/P/851+20+SH/zZn+o/yA/0HyKXBojxCwPE+Jae2/987TlAku8r/bT7zX6aBabFzA4AAAAAAKBpZnYAAAAAALDSfoaZENqqISZgczQzOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAAJqm2AEAAAAAADRNsQMAAAAAAGjaxtgdAAAAAABguva7B8s5N9NgZgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDTFDsAAAAAAICmKXYAAAAAAABN2xi7AwAAAAAATNde92A552YazOwAAAAAAACaptgBAAAAAAA0TbEDAAAAAABommIHAAAAAADQNMUOAAAAAACgaRtjdwAAAAAAgOnaT7I3dicmbH/sDpDEzA4AAAAAAKBxih0AAAAAAEDTFDsAAAAAAICmKXYAAAAAAABNs0F5S+6n1/JUGaL09es9t/+NnttPZn8PffvdAWK8MECMhwPE2Om3+ff/W7/tJ8lLfedFkvz+ADEuDBDj2/tt/kf6bX5miB3dvjJAjCF8bYAY/7fn9v9zz+0nyd8dIMYQv0O+OECM7X6b/+pv99t+knzHr/UfI98zQIyPDxDjjweI8Uc9t//Vntsfyr8ZIMbfGCDGpwaI8S96bv+DnttPks8PEKPn3+dJkt8aIMa7/Tb/g9/Vb/tJki8PEGOIz8ePB4jxOwPEeLnn9l8tPQdIf58B7KwNZ4JiBwAAAAAAK+13D5ZzbqbBMlYAAAAAAEDTFDsAAAAAAICmKXYAAAAAAABNU+wAAAAAAACaptgBAAAAAAA0bWPsDgAAAAAAMF173YPlnJtpMLMDAAAAAABommIHAAAAAADQNMUOAAAAAACgaYodAAAAAABA0xQ7AAAAAACApm2M3QEAAAAAAKZrv3uwnHMzDWZ2AAAAAAAATVPsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaJoNygEAAAAAWGk/yd7YnZgwG5RPg5kdAAAAAABA0xQ7AAAAAACApil2AAAAAAAATVPsAAAAAAAAmmaD8ul7Yf7FH/S9003tuf0k+aDn9of4M3x9gBhD7Pj0xwPE+OYAMb7Wb/OP+m0+SfInfzRAkL5zL0m+OkCMb/Tb/BCp98IQf99/MkCMIfT8952k/7/0If5fGuL3+RC/Q4bY0a/n/zN6bj5J8tUh/i6G+D01xPXUEL8L+/4dclp+n783QIwhrjuHyL//13P7Q/ybGuLvYoj/+07D574hLm7/dIAYQ1wjDHHdOcSfo+/8azgv/uDJdl9YcRjQuFLrEJ/CeVallAtJ3h67HwAAAABwCrxaa31n7E60oJTyySRfTpIfTfLxcbszaR8k+dWDbz9Va313tM6cYZaxAgAAAAAAmmYZq+n7YpJXu6+/kuNN6Hs5B7NBXs0wE8eBYchvOL3kN5xe8htOL/kNbXghySe6r784ZkeA/ih2TFyt9U+TPNXUulLK4rfvmTYFp4f8htNLfsPpJb/h9JLf0JTfHbsDQL8sYwUAAAAAADRNsQMAAAAAAGiaZawAAAAAAFhpv3uwnHMzDWZ2AAAAAAAATVPsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaJoNyk+hWuu7ScrY/QBOnvyG00t+w+klv+H0kt8AMB2KHQAAAAAArLSfZG/sTkzY/tgdIIllrAAAAAAAgMYpdgAAAAAAAE1T7AAAAAAAAJqm2AEAAAAAADRNsQMAAAAAAGjaxtgdAAAAAABguva6B8s5N9NgZgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDT7NlxipRSLiV5PcnjJJvd8+dqrfdH7RjQG3kPbSilXM0sV88leZjkfpJrtdbdI94nx2Hiuvy+2H07z/Hrtda7R7xPfkOjSin3kry2Ll/lOAAMT7HjlCilXE9yKcn5Wuvj7mfbSd4qpbxWa709ageBYymlbCZ5s9Z6+RjHyntoQCnlVpLddLna5emtJA9KKddqrTdWvE+Ow8R1Nzxv1lovLvzsZpI7pZTbq/4/l9/Qrq7AuX3EMXIcAEZQaq1j94HnVErZSXInswup+3JhCrgAABOdSURBVIdeu5LkZpIX5xdZwPSUUrYy+0D02cxGfq3NWXkPbehudmzWWl8/9PPNJI+6by8eHgEux2H6uqLGvVrrG0tee5TZ/+evH35dfkO7Dv3//ZEc7o6R48CpUUr5ZJIvJ8n5JN86bncm7U+T3Dv49lO11ndH68wZZs+O0+FmkscrpsN+oXt+c8D+AMdUSrlaSnmQ5HoOprgfh7yHietuiFw5XOhIku4Gx3xGx60lb5fjMH2fSXKtu7F52HyJumUzO+Q3tOvNHOT3KnIcAEai2NG4bjT4Vg4ump7Q3UzZzWzEODAxtdYbtdZXaq2Xu5GfR47wkvfQjJ0k69bsv9M9b3Z5nUSOQ0M2M8vVjxQ0M9u3I93rH5Lf0K6usPl21hQ75DgAjEuxo33zkWTrbpDuJh9enAHtk/fQhleTXOpmby2zeLNkce1vOQ5tuJFZnt5c8tq57vnwyG75De1auc/WAjkOACNS7GjfxaMP+fBCa+0makAz5D20ZavblPSwxWXrFm+KyHFoQK31Wq31xSV77mzmIDc/d+ht8hsa1O3Bde0Yh8pxABiRYkf75lPj319zzHwa/Ss99wUYhryHNtzM7IbG3RXrdi8ub7O75OdyHNp0pXt+Y0nuy29oTLc01eaK/8sPk+MAMKKNsTvAc5uPCj1ynX/g1JD30IBa626SF9cc8jPd8/3u2Dk5Do3qlqX5bJIbtdZlo8DlN7TnZpLLxzxWjgOn1l73YDnnZhrM7GjfuaMPeaZjgemS99C4bpTofHPS1w69LMehIaWUrVLKrW5/njuZbUx8ePmqOfkNDSmlXElys9tY/DjkOACMSLHjbNk8+hDglJH3ME3zDY2vHXNZjFXkOIys1rpba71ca30ls9lcW0kedTdJn4f8hhF1++9crLXe7imEHAeAE6bY0b6HRx/yIVNp4XSQ99Cw7gboTmbr+d9Ycogch0bVWh/XWi9mlps3lxQ85De047ibki+S4wAwIsWO9j3NBdLTXHgB0yXvoVHdKNHrmRU6Xl9xmByH9r3RPd/s8n5OfkMDuv13Hh/aU+s45DgAjEixo33zC6R1U2Dna4EaOQKng7yHdt1L8oU1hY5EjsNp8PbC159Z+Fp+Qxuu1VqfdlZHIscBYFQbY3eA5zYfafLSmmPmF1pvrzkGaIe8hwaVUm4luXtEoSOR4zB53ajv65nl9LIboos3Mc8vfC2/YeJKKdtJLpRSHq04ZJ6jb5VSkiS11he7n8lx4NSqSfbH7sSE1bE7QBLFjtPgXve8buTIVvd8t+e+AMOQ99CYUsr1JFlW6CilXMpsqYx5vspxmL7rSbaTbJdSbh6x1M2Dha/lN0xcrfV+khdXvV5KeZBZnn66O3aRHAeAEVnGqn1f6J4vrDlmK8lurdU0WTgd5D00pCtmbNVaL6845GdyMBI0kePQgocrvp7bXvh68Wao/IbTTY4DwIgUOxrXXSDdzmxU2UdGj3RT7JPZ6DOgHedWvSDvoR3dUhjXM9ukePvQY6crhOwsjgqX49CEW5kVMc6vuGH5avd8f2HWlvyG0+HcoecPyXEAGFep1Ypiresuor6UJRuellLuJUmt9fyy9wLT0eXyfG3gi4s3R1YcK+9hwhbydN1SFslsdOcrK94rx2GiSil3ktyqtb5x6OfbOVjK5pXDS1zJb2jXoev11w/n/8Ixchw4FUopn0zy5ST5oSQfG7c7k/b1JL9x8O2naq3vjtaZM8zMjlOgGz1yPslOKeXmwmjRO0keupCC6epy9UEppebgg1OS3Cml1O61q4ffJ++hCddzdKEjeXIJqyRyHFpQa72Y5JVSyr1SyvVSyqVuf557ma3F/+KyvTzkN7SnlHK126tj8Xr9Znetfm/xWDkOAOMxs+OU6abFbid5nOSdJRumARNTStlctWbvutcWjpH3cIrJcZi2bhT3hczydDezpavWbVi++F75DY1YdV1+xLW8HAeatjiz4y/HzI51vp7kNw++NbNjJIodAAAAAAA8QbHj+BQ7psEyVgAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAgDOmlHKplHKnlHJr4Xm7p1j3+mp7bqPPxgEAAAAAaNte92C5Fs9NKeV6kktJztdaH3c/207yVinltVrr7ROMdTVJr4WORLEDAAAAAADOjFLKTpKrWSh0JEmt9X4p5VqSW6WUFxdfe45Ym0muP287x2EZKwAAAAAAODtuJnlca72/5LUvdM9vnlCsN5PsnlBba5nZAQAAAAAAJ+PlUsraA2qt7w7Ul48opWwl2UryxrLXa62PSym7mS1x9byxdpK8nWSzi9krxQ4AAAAAADgZbx/jmPXVkH7tdM/rlqjaTbJVStmptd59jljXaq0XSykXn6ONY1PsAAAAAABgpZpkf+xOTFgduwNP5ziFh3khZDvJMxU7ug3Qrz3Le5+VYgcAAAAAAJyMV5O8N3Yn1pgvJ/X+mmMeds+vPEuAbqmszRV7gvRGsQMAAAAAAE7Ge2PuyXEMm93zumWsntfNJJd7bH+pPzN0QAAAAAAAYBTnejo2SVJKuZLkZq21z2LKUoodAAAAAADAYZtHH3KglLKZ5GKt9XZP/VlLsQMA4IwrpeyUUm6VUh6UUmop5VH39Z1SytVuvdWTinWvi7FzUm2yWills5Ryc+Hv9kE30goAADibHh59yIeednbG4JuSL7JnBwDAGdUVMW4l2V748W5mU5W3usdOktfzjBvTMZ5uVNWXMhuN9TjJ/e7r88d8/05m/z4Oj+Z6nORztdYbC3Hu5WCjw8Xj3qm1XjzU7q0klw4de/fwcQAATMdejJpfZ6+ndrtr7ecafLZkk/CnKWAcuzDSfX54XGvdfYr2T5RiBwDAGVRK2U7yVg5uhL92eKpxd7E62qgcntubmf39Xn6WaeS11rtJXpyvudv9+PzhD0vdWryvdMWzB92Pb9Ral/7bqbVe7j60PUpyO7N/e4Ov5wsAAA24ktngs+dxeODavICxbomq+V4dT3Odfm3sAUyKHQAAZ0x3o3le6Lif5NPLbjZ3N7vvdsfTnkuZjax63vVyd1d8/YRa624pZf7t28do936t9fLzdAwAAE6zbjb1jRNudn5N/9KaY+afAY9zXT8fTHehlPLoiPbemn9mqLW+eJy2n4ZiBwDA2TMf8f84Kwodi4y6b8/CPisnMYV8cer6uRxvdNe5I15/M4lCBwAADO9e97xuUNv888Td4zTYzf5eWbwopTzo2vz0kmW1Toyl1gAAzpDuJvh8v4TPKWScWic5G2fx38jKdkspV4953HaS3THX8gUAgDPsC93zhTXHbGV2zd7U50XFDgCAs2VxH4U3RusFzThUlFg6Y6Nb6uzVzJZFS9ZvaH991X4eAABAv7oCxu0k28uWLO72bkyS60te2yql3Cml3Dz82hHOHXruhWIHAMDZMr9wvX0So3RKKVdKKfdKKbWU8qi78N05+p1L25q3c2XJa5vda3XN+7a74252famllAellEsLx+50fVzs79JZCCvafbCs3UPvm8d4tBDnXinl6rPuf3Lc89z1teZgavr2/LytWT/3aWyt+Pn1zApp8yWvVhVFFjc7BwCgEXseRz4a81pmM7g/UtDofna/1rpscNzrmX2mvNLN2D5S9xlo/jlo1eeJE6HYAQBwtpzIXg7dzf87md243s5sRP/DzC5875RSll009+1Cki8l+UwO/nxbSW6VUi51yyzd6X62m9kF906SLx1RhLiQ5FHX7rxANG/3iYJDdzP/TtfubmZr3O5mdo6u56DYdCzPcJ7no7QW19a93T2+kGc3/3MvG/m1neRBNwNk3XGbSS6fwIbpAADAc+gGvp1PstMN6tqeD9pK8rDWen7FWz+f7nPOUXtvdIO9HmT2WWpuPoDs3qr3PQ8blAMAnBGHbug/eM7mbmV2w/12ktfms0S6PUFuJblaSsnAyxXdTHJjMWZ3Eb2dg03ZL9Za73avbWc2A2Izs0LGqmW91rV7LU8WFubFh/OLF//duf9MDpZ5Oq6nOs9dweHywp9tt9Z6EhuBP8zsPL205LXrtdaL3dfzItOymR3z2R8AAMDIus8Or3QDuHYyG7h0bV0Ro3tt3ZK1i8feKKW8sWxFgWed8X4UMzsAAM6OE1kftVu+aSezqc2XFy9euwvmT2d2oXy1uyk/lMdLiivz7zczK1h8WJjoLtTnBY5VI5eSWcFgVbuHZ2psLrT9oVrr41rrG0+zKffEzvO83098KFmyLNX7K47bSj56XpbpRoBdPeo4AADg+dVa79Zab3SfV552cNZRbS9dOrmvjc8VOwAAzohDN9qPNRpnhc92z0tH6XcXrm+sO6Yny5ZpWvwzf37J6/MZLuuKBcuWXVpVtJjPvHjm/TkWTOk8Ly7fleTD0VgXDy1L9ZHjOkfO6uiW7Lqe5esGAwAArKXYAQBwtsxv0h9rM7kV5u99Z80xb3fPF54jztNatjTXw4Wvn3WfkqPaXfRa93w9yXxj8uvH3bzvkCmd52Ubjy8rYHzkvHQzVO6sG71VSrmV2bJc7686BgAAYB3FDgCAs2W+jNPOs8w8WHzPEVOPFzcIH8raqdB9TZU+FON2kst5sqh0Ncm9UsrNlW88ZILn+YmNx7vizeMly3J92NeFP8PrtdZV+6EkSbplui5m9b4pAACMaN/jyAfjU+wAADhbFpcI+uzKo1ZYvPF+xD4R89eedTZFs2qtt2utr2S2VNjrOSgwXTnuXhQTPM/zGRfzmR2fXbH5/OLMjnPdslQ2JQcAAHqn2AEAcIZ0I/Hneyw8674S803r1i3NdLF7XrcE09M4kc3Vh1Rr3e02+buY2WyPZFb8OK4xzvMqH25Q3i1LtWz/k8Xjktnm6psnvckhAADAMoodAABnz2s5WG7oraMKHkv2m5jf6F66kXQ3E+FK9+2xl246ws4JtTOW+eyOpynajHGeV1lcSuv1Q5uSf+jQklvXYlYHAAAwEMUOAIAzprshfT6zG9jbSb7UjdZ/Qillq9s4+t7iUkq11huZzTrY6jbg3lp4z3aSe923bzzlqP75rIBXDvcjK274T00p5UEp5cqSAtJ8ybC7h9+zSo/n+VksLk913ALGzSH2SQEAAEiSjbE7AADA8Gqtu6WU85nNCNhJcquUkizf8Pp+nrzZnSSfTvJWZsWSB6WUJzawTnK71vo0SzYlyZ0klzJbXmu768tW17/b3WuT1RUjtjI7pzdLKcvO5dPOdOjjPD+LedzjFFYeJ3nYFWsAAAAGYWYHAMAZ1e0pcTGzfR9u56C4cC6zAsftJBdrrecPj9CvtT6utZ7PkxtwP1x4z+U8pVrrG0luZHazfCfJha5P55+lvaF1+6G8mFlB435m53Ersz/P7SSvdMc8TZsnfp6fRdfv3RyvWPNOnm5vEgAAJm4/yZ7Hysf+s59aTlCptY7dBwAAgHTLfz1Kcs3MEACAcZVSPpnky0nyF2OJoHW+meR/H3z7qVrru6N15gwzswMAAAAAAGiaYgcAADA1L43dAQAAoC2KHQAAwKhKKddLKXeSfKn70dVSyr1Syq1uaSsAAIC1LLUGAACMqtZ6nI3PAQAAVlLsAAAAAABgpf3uwXLOzTRYxgoAAAAAAGiaYgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDTFDsAAAAAAICmbYzdAQAAAAAApmsvSRm7ExO2N3YHSGJmBwAAAAAA0DjFDgAAAAAAoGmKHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE3bGLsDAAAAAABM136SvbE7MWH7Y3eAJGZ2AAAAAAAAjVPsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaJpiBwAAAAAA0LSNsTsAAAAAAMB07ScpY3diwvbH7gBJzOwAAAAAAAAap9gBAAAAAAA0TbEDAAAAAABommIHAAAAAADQNMUOAAAAAACgaRtjdwAAAAAAgOnaG7sDE+f8TIOZHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAAJpmg3IAAAAAAFbaH7sDE+f8TIOZHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAAJqm2AEAAAAAADRtY+wOAAAAAAAwXftjd2DinJ9pMLMDAAAAAABommIHAAAAAADQNMUOAAAAAACgaYodAAAAAABA0xQ7AAAAAACApm2M3QEAAAAAAKZrL0kduxMTtj92B0hiZgcAAAAAANA4xQ4AAAAAAKBpih0AAAAAAEDTFDsAAAAAAICmKXYAAAAAAABN2xi7AwAAAAAATNf+2B2YOOdnGszsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaJo9OwAAAAAAWKnGvhTr1LE7QBLFDgAAAAAA1vhg7A7AMVjGCgAAAAAAaFqp1SQbAAAAAAAOlFI2krw8dj8a9F6t9Ztjd+IsUuwAAAAAAACaZhkrAAAAAACgaYodAAAAAABA0xQ7AAAAAACApil2AAAAAAAATVPsAAAAAAAAmqbYAQAAAAAANE2xAwAAAAAAaJpiBwAAAAAA0DTFDgAAAAAAoGmKHQAAAAAAQNMUOwAAAAAAgKYpdgAAAAAAAE1T7AAAAAAAAJqm2AEAAAAAADRNsQMAAAAAAGiaYgcAAAAAANA0xQ4AAAAAAKBpih0AAAAAAEDTFDsAAAAAAICmKXYAAAAAAABN+//FK3baFBpbbQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 2000x2000 with 2 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "(array([[7.67188290e-05, 9.20103163e-09, 5.42188929e-05, ...,\n", + " 1.40227629e-04, 2.11072752e-06, 3.79809240e-10],\n", + " [6.63275306e-05, 5.00029217e-05, 7.22200675e-05, ...,\n", + " 1.31085375e-04, 1.92060428e-05, 1.84821147e-05],\n", + " [4.88593567e-05, 5.10923089e-05, 5.70885912e-05, ...,\n", + " 1.61205171e-04, 2.12402080e-04, 1.95784276e-05],\n", + " ...,\n", + " [2.07284711e-04, 2.24263509e-04, 2.02881843e-04, ...,\n", + " 1.46890199e-04, 2.53057322e-04, 2.05285071e-04],\n", + " [2.32608307e-04, 1.47501161e-04, 2.01243495e-04, ...,\n", + " 5.39878210e-04, 4.42389769e-05, 1.74444826e-08],\n", + " [2.31247962e-04, 2.31575360e-04, 1.33804750e-04, ...,\n", + " 1.39050830e-04, 3.93456999e-04, 5.80479135e-05]]),\n", + " array([[0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " ...,\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.]]),\n", + " array([[9.07232611e-05, 3.73643464e-05, 4.86803687e-05, ...,\n", + " 4.48682638e-05, 8.73163476e-10, 1.27228297e-05],\n", + " [5.23872250e-05, 6.75064669e-05, 5.81001475e-05, ...,\n", + " 5.13826770e-05, 1.85895767e-05, 1.25693642e-05],\n", + " [6.78787818e-05, 6.67554270e-05, 5.92127855e-05, ...,\n", + " 2.53375278e-06, 2.09295437e-04, 1.12410473e-04],\n", + " ...,\n", + " [2.07049437e-04, 2.13428910e-04, 2.31935024e-04, ...,\n", + " 1.86062317e-05, 2.52854702e-04, 2.18011259e-08],\n", + " [2.52973268e-04, 1.51924502e-04, 1.91894746e-04, ...,\n", + " 2.03550313e-05, 3.64532025e-05, 3.33841507e-06],\n", + " [2.55473138e-04, 2.43693691e-04, 1.27401473e-04, ...,\n", + " 1.09004101e-04, 3.77643862e-04, 1.98246368e-05]]),\n", + " [(0, 12),\n", + " (2, 0),\n", + " (5, 6),\n", + " (7, 20),\n", + " (10, 5),\n", + " (12, 4),\n", + " (14, 13),\n", + " (16, 8),\n", + " (18, 21),\n", + " (20, 36),\n", + " (22, 11),\n", + " (24, 16),\n", + " (28, 19),\n", + " (32, 26),\n", + " (36, 31),\n", + " (38, 33),\n", + " (41, 40),\n", + " (46, 48),\n", + " (1, 7),\n", + " (6, 10),\n", + " (11, 1),\n", + " (15, 24),\n", + " (19, 15),\n", + " (23, 35),\n", + " (29, 17),\n", + " (33, 34),\n", + " (37, 29),\n", + " (43, 30),\n", + " (3, 23),\n", + " (8, 2),\n", + " (13, 43),\n", + " (21, 25),\n", + " (39, 42),\n", + " (4, 14),\n", + " (17, 32),\n", + " (26, 9),\n", + " (30, 46),\n", + " (45, 39),\n", + " (25, 37),\n", + " (34, 18),\n", + " (27, 38),\n", + " (44, 22),\n", + " (31, 27),\n", + " (40, 3),\n", + " (9, 44),\n", + " (35, 47),\n", + " (48, 28),\n", + " (47, 41),\n", + " (49, 45),\n", + " (42, 49)])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from Visualizations import Heatmap, permute_and_sort\n", + "permute_and_sort(W2, H2, W1, permute = True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "!{sys.executable} -m pip install folium" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -97,7 +356,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.5" } }, "nbformat": 4,