From 161ce0e752e1c2ef9830672a312ba8cd361d3b77 Mon Sep 17 00:00:00 2001
From: Richard Sowers <r-sowers@illinois.edu>
Date: Mon, 18 Feb 2019 22:40:34 -0600
Subject: [PATCH] error analysis

---
 ErrorAnalysis/ErrorAnalysis.ipynb             | 676 ++++++++++++++++++
 ErrorAnalysis/LevelCurveData.csv              |  61 ++
 ErrorAnalysis/QP.ipynb                        | 228 ++++++
 ErrorAnalysis/error_as_sparsity.png           | Bin 0 -> 19559 bytes
 .../error_increasing_as_sparsity.png          | Bin 0 -> 33667 bytes
 ErrorAnalysis/sparsity_as_penalty.png         | Bin 0 -> 29067 bytes
 6 files changed, 965 insertions(+)
 create mode 100644 ErrorAnalysis/ErrorAnalysis.ipynb
 create mode 100644 ErrorAnalysis/LevelCurveData.csv
 create mode 100644 ErrorAnalysis/QP.ipynb
 create mode 100644 ErrorAnalysis/error_as_sparsity.png
 create mode 100644 ErrorAnalysis/error_increasing_as_sparsity.png
 create mode 100644 ErrorAnalysis/sparsity_as_penalty.png

diff --git a/ErrorAnalysis/ErrorAnalysis.ipynb b/ErrorAnalysis/ErrorAnalysis.ipynb
new file mode 100644
index 0000000..87588e9
--- /dev/null
+++ b/ErrorAnalysis/ErrorAnalysis.ipynb
@@ -0,0 +1,676 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<img src=\"logo.png\" alt=\"University of Illinois\" style=\"width: 200px;\"/>\n",
+    "\n",
+    "### Error Analysis ###\n",
+    "by: Richard Sowers\n",
+    "* <r-sowers@illinois.edu>\n",
+    "* <https://publish.illinois.edu/r-sowers/>\n",
+    "\n",
+    "Copyright 2019 University of Illinois Board of Trustees. All Rights Reserved. Licensed under the MIT license\n",
+    "\n",
+    "### Explanation###\n",
+    "This code plots error analysis for Manhattan Traffic Data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "imports"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas\n",
+    "import numpy\n",
+    "import matplotlib.pylab as plt\n",
+    "%matplotlib inline\n",
+    "import scipy.interpolate\n",
+    "import scipy.optimize "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "constants"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "fname=\"LevelCurveData\"\n",
+    "colorsequence=['b', 'g', 'r', 'c', 'm', 'y', 'k']"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "read data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    rank  beta  no_iterations  pre_error  post_error  pre_sparsity  \\\n",
+      "0     40     0            263  26.638031   41.724601      0.673253   \n",
+      "1     40  1000            174  26.958008   41.843305      0.693565   \n",
+      "2     40  2000            176  26.952959   41.781512      0.715966   \n",
+      "3     40  3000            177  26.990673   41.414115      0.730479   \n",
+      "4     40  4000            179  27.039437   41.120108      0.741846   \n",
+      "5     40  5000            180  27.107603   40.823740      0.750373   \n",
+      "6     40  6000            179  27.200291   40.558133      0.756349   \n",
+      "7     40  7000            177  27.313106   40.605093      0.760755   \n",
+      "8     40  8000            171  27.471069   40.606574      0.762338   \n",
+      "9     40  9000            182  27.645194         NaN      0.773470   \n",
+      "10    50     0            270  25.361975   41.153543      0.694137   \n",
+      "11    50  1000            187  25.667488   41.022584      0.724678   \n",
+      "12    50  2000            200  25.591666   40.397311      0.755850   \n",
+      "13    50  3000            211  25.597566   39.414694      0.776840   \n",
+      "14    50  4000            198  25.726620   39.495108      0.781262   \n",
+      "15    50  5000            195  25.831230   39.344772      0.788515   \n",
+      "16    50  6000            187  26.009028   39.566181      0.792830   \n",
+      "17    50  7000            193  26.131918   39.161717      0.801339   \n",
+      "18    50  8000            179  26.513574         NaN      0.797863   \n",
+      "19    50  9000            192  26.576391         NaN      0.807302   \n",
+      "20    60     0            283  24.401843   40.857266      0.712231   \n",
+      "21    60  1000            253  24.343230   39.466930      0.774516   \n",
+      "22    60  2000            214  24.572460   39.407980      0.787485   \n",
+      "23    60  3000            207  24.723011   39.306247      0.802759   \n",
+      "24    60  4000            195  24.903298   39.109695      0.810982   \n",
+      "25    60  5000            197  25.128871         NaN      0.820763   \n",
+      "26    60  6000            194  25.307036         NaN      0.825718   \n",
+      "27    60  7000            207  25.425537         NaN      0.836160   \n",
+      "28    60  8000            201  25.715512         NaN      0.837919   \n",
+      "29    60  9000            213  25.894979         NaN      0.845202   \n",
+      "30    70     0            285  23.537055   40.507429      0.728575   \n",
+      "31    70  1000            195  23.756524   39.466494      0.779535   \n",
+      "32    70  2000            213  23.691146   38.150236      0.814180   \n",
+      "33    70  3000            189  23.988771   38.370242      0.819442   \n",
+      "34    70  4000            203  24.129949         NaN      0.836279   \n",
+      "35    70  5000            187  24.381455         NaN      0.835210   \n",
+      "36    70  6000            171  24.720095         NaN      0.833119   \n",
+      "37    70  7000            161  25.051581         NaN      0.831572   \n",
+      "38    70  8000            165  25.220249         NaN      0.836619   \n",
+      "39    70  9000            157  25.573799         NaN      0.836309   \n",
+      "40    80     0            281  22.636278   39.887152      0.757383   \n",
+      "41    80  1000            205  22.785963   38.541131      0.808538   \n",
+      "42    80  2000            190  23.087363         NaN      0.824740   \n",
+      "43    80  3000            179  23.298403         NaN      0.833686   \n",
+      "44    80  4000            178  23.535499         NaN      0.840869   \n",
+      "45    80  5000            192  23.703209         NaN      0.853422   \n",
+      "46    80  6000            202  23.905872         NaN      0.862361   \n",
+      "47    80  7000            171  24.401883         NaN      0.856355   \n",
+      "48    80  8000            160  24.818266         NaN      0.854113   \n",
+      "49    80  9000            158  25.005476         NaN      0.857618   \n",
+      "50    90     0            286  21.946046   39.842869      0.764760   \n",
+      "51    90  1000            210  22.325356         NaN      0.824693   \n",
+      "52    90  2000            210  22.625222         NaN      0.849203   \n",
+      "53    90  3000            198  23.265543         NaN      0.855818   \n",
+      "54    90  4000            206  23.588832         NaN      0.868362   \n",
+      "55    90  5000            172  24.027408         NaN      0.863711   \n",
+      "56    90  6000            172  24.504015         NaN      0.867586   \n",
+      "57    90  7000            162  24.801417         NaN      0.867255   \n",
+      "58    90  8000            217  24.845114         NaN      0.885260   \n",
+      "59    90  9000            214  25.350232         NaN      0.884125   \n",
+      "\n",
+      "    post_sparsity  spikey_mean  spikey_std  H_zero_percent  \n",
+      "0        0.838865     0.720289    0.122731       88.617507  \n",
+      "1        0.851688     0.664605    0.112649       89.375543  \n",
+      "2        0.865042     0.629207    0.113267       90.285621  \n",
+      "3        0.872522     0.608351    0.115246       90.801477  \n",
+      "4        0.878487     0.594085    0.117988       91.222850  \n",
+      "5        0.882700     0.584894    0.121282       91.524761  \n",
+      "6        0.885206     0.579853    0.125306       91.705039  \n",
+      "7        0.887280     0.577937    0.130997       91.867941  \n",
+      "8        0.887847     0.581200    0.141841       91.922242  \n",
+      "9        0.895273          NaN         NaN       92.365334  \n",
+      "10       0.848009     0.769000    0.134002       90.075586  \n",
+      "11       0.866355     0.685509    0.126295       91.196351  \n",
+      "12       0.883902     0.641437    0.125233       92.250217  \n",
+      "13       0.894206     0.621531    0.139422       92.930495  \n",
+      "14       0.896300     0.624705    0.163593       93.070374  \n",
+      "15       0.899773     0.624037    0.174156       93.295395  \n",
+      "16       0.902260     0.630459    0.189228       93.439618  \n",
+      "17       0.906130     0.636480    0.203421       93.719374  \n",
+      "18       0.905188          NaN         NaN       93.678540  \n",
+      "19       0.910054          NaN         NaN       94.013901  \n",
+      "20       0.858228     0.802775    0.138935       91.062844  \n",
+      "21       0.893674     0.674354    0.141126       93.337677  \n",
+      "22       0.901314     0.645568    0.129150       93.735158  \n",
+      "23       0.908879     0.632908    0.136831       94.185491  \n",
+      "24       0.912043     0.642716    0.165243       94.420794  \n",
+      "25       0.916586          NaN         NaN       94.717637  \n",
+      "26       0.918224          NaN         NaN       94.879815  \n",
+      "27       0.923680          NaN         NaN       95.238199  \n",
+      "28       0.924444          NaN         NaN       95.326528  \n",
+      "29       0.928257          NaN         NaN       95.577034  \n",
+      "30       0.864804     0.828064    0.136632       92.172024  \n",
+      "31       0.894401     0.694871    0.122168       93.758843  \n",
+      "32       0.912729     0.657580    0.146093       94.808241  \n",
+      "33       0.915191     0.668287    0.175769       94.929875  \n",
+      "34       0.921779          NaN         NaN       95.343800  \n",
+      "35       0.921254          NaN         NaN       95.344421  \n",
+      "36       0.919922          NaN         NaN       95.299119  \n",
+      "37       0.919821          NaN         NaN       95.313392  \n",
+      "38       0.922004          NaN         NaN       95.449919  \n",
+      "39       0.921553          NaN         NaN       95.505771  \n",
+      "40       0.881275     0.810585    0.141567       93.178215  \n",
+      "41       0.910436     0.682122    0.141015       94.776281  \n",
+      "42       0.919388          NaN         NaN       95.248154  \n",
+      "43       0.924052          NaN         NaN       95.520743  \n",
+      "44       0.928789          NaN         NaN       95.793875  \n",
+      "45       0.933710          NaN         NaN       96.139227  \n",
+      "46       0.936971          NaN         NaN       96.380864  \n",
+      "47       0.934619          NaN         NaN       96.254344  \n",
+      "48       0.934205          NaN         NaN       96.265204  \n",
+      "49       0.935699          NaN         NaN       96.379778  \n",
+      "50       0.885119     0.841852    0.137325       93.704991  \n",
+      "51       0.917813          NaN         NaN       95.565209  \n",
+      "52       0.929556          NaN         NaN       96.208611  \n",
+      "53       0.932820          NaN         NaN       96.404576  \n",
+      "54       0.937287          NaN         NaN       96.673907  \n",
+      "55       0.935663          NaN         NaN       96.579786  \n",
+      "56       0.936817          NaN         NaN       96.674389  \n",
+      "57       0.936471          NaN         NaN       96.683560  \n",
+      "58       0.942964          NaN         NaN       97.072111  \n",
+      "59       0.944177          NaN         NaN       97.119413  \n"
+     ]
+    }
+   ],
+   "source": [
+    "data_raw=pandas.read_csv(fname+\".csv\",na_values=['nan',' nan'])\n",
+    "print(data_raw)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "   rank  beta  no_iterations  pre_error  post_error  pre_sparsity  \\\n",
+      "0    40     0            263  26.638031   41.724601      0.673253   \n",
+      "1    40  1000            174  26.958008   41.843305      0.693565   \n",
+      "2    40  2000            176  26.952959   41.781512      0.715966   \n",
+      "3    40  3000            177  26.990673   41.414115      0.730479   \n",
+      "4    40  4000            179  27.039437   41.120108      0.741846   \n",
+      "\n",
+      "   post_sparsity  spikey_mean  spikey_std  H_zero_percent  \n",
+      "0       0.838865     0.720289    0.122731       88.617507  \n",
+      "1       0.851688     0.664605    0.112649       89.375543  \n",
+      "2       0.865042     0.629207    0.113267       90.285621  \n",
+      "3       0.872522     0.608351    0.115246       90.801477  \n",
+      "4       0.878487     0.594085    0.117988       91.222850  \n",
+      "Index(['rank', 'beta', 'no_iterations', 'pre_error', 'post_error',\n",
+      "       'pre_sparsity', 'post_sparsity', 'spikey_mean', 'spikey_std',\n",
+      "       'H_zero_percent'],\n",
+      "      dtype='object')\n"
+     ]
+    }
+   ],
+   "source": [
+    "data=data_raw.copy()\n",
+    "print(data.head())\n",
+    "print(data.columns)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th>no_iterations</th>\n",
+       "      <th>pre_error</th>\n",
+       "      <th>post_error</th>\n",
+       "      <th>pre_sparsity</th>\n",
+       "      <th>post_sparsity</th>\n",
+       "      <th>spikey_mean</th>\n",
+       "      <th>spikey_std</th>\n",
+       "      <th>H_zero_percent</th>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th></th>\n",
+       "      <th>rank</th>\n",
+       "      <th>beta</th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "      <th></th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <th>40</th>\n",
+       "      <th>0</th>\n",
+       "      <td>263</td>\n",
+       "      <td>26.638031</td>\n",
+       "      <td>41.724601</td>\n",
+       "      <td>0.673253</td>\n",
+       "      <td>0.838865</td>\n",
+       "      <td>0.720289</td>\n",
+       "      <td>0.122731</td>\n",
+       "      <td>88.617507</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <th>40</th>\n",
+       "      <th>1000</th>\n",
+       "      <td>174</td>\n",
+       "      <td>26.958008</td>\n",
+       "      <td>41.843305</td>\n",
+       "      <td>0.693565</td>\n",
+       "      <td>0.851688</td>\n",
+       "      <td>0.664605</td>\n",
+       "      <td>0.112649</td>\n",
+       "      <td>89.375543</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <th>40</th>\n",
+       "      <th>2000</th>\n",
+       "      <td>176</td>\n",
+       "      <td>26.952959</td>\n",
+       "      <td>41.781512</td>\n",
+       "      <td>0.715966</td>\n",
+       "      <td>0.865042</td>\n",
+       "      <td>0.629207</td>\n",
+       "      <td>0.113267</td>\n",
+       "      <td>90.285621</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <th>40</th>\n",
+       "      <th>3000</th>\n",
+       "      <td>177</td>\n",
+       "      <td>26.990673</td>\n",
+       "      <td>41.414115</td>\n",
+       "      <td>0.730479</td>\n",
+       "      <td>0.872522</td>\n",
+       "      <td>0.608351</td>\n",
+       "      <td>0.115246</td>\n",
+       "      <td>90.801477</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <th>40</th>\n",
+       "      <th>4000</th>\n",
+       "      <td>179</td>\n",
+       "      <td>27.039437</td>\n",
+       "      <td>41.120108</td>\n",
+       "      <td>0.741846</td>\n",
+       "      <td>0.878487</td>\n",
+       "      <td>0.594085</td>\n",
+       "      <td>0.117988</td>\n",
+       "      <td>91.222850</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "             no_iterations  pre_error  post_error  pre_sparsity  \\\n",
+       "  rank beta                                                       \n",
+       "0 40   0               263  26.638031   41.724601      0.673253   \n",
+       "1 40   1000            174  26.958008   41.843305      0.693565   \n",
+       "2 40   2000            176  26.952959   41.781512      0.715966   \n",
+       "3 40   3000            177  26.990673   41.414115      0.730479   \n",
+       "4 40   4000            179  27.039437   41.120108      0.741846   \n",
+       "\n",
+       "             post_sparsity  spikey_mean  spikey_std  H_zero_percent  \n",
+       "  rank beta                                                          \n",
+       "0 40   0          0.838865     0.720289    0.122731       88.617507  \n",
+       "1 40   1000       0.851688     0.664605    0.112649       89.375543  \n",
+       "2 40   2000       0.865042     0.629207    0.113267       90.285621  \n",
+       "3 40   3000       0.872522     0.608351    0.115246       90.801477  \n",
+       "4 40   4000       0.878487     0.594085    0.117988       91.222850  "
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "data=data.set_index([\"rank\",\"beta\"],drop=True,append=True)\n",
+    "data.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[40 50 60 70 80 90]\n"
+     ]
+    }
+   ],
+   "source": [
+    "rankvals=pandas.unique(data.index.get_level_values(\"rank\"))\n",
+    "print(rankvals)\n",
+    "data_by_rank=data.groupby(by=\"rank\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEaCAYAAADg2nttAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8HMX5/99zVb13q1lyxQVsjA18KQZjILRASCFUE0roMfwMJLSAgUACSYCQQAjFEIeSQguBYIOxDQQMLtg0N8mSLFldp67r8/tjVtKpWbKl06nM+/W6122ZnX1u93Y+O888MyOklGg0Go1Gsz9MoTZAo9FoNCMfLRYajUaj6RctFhqNRqPpFy0WGo1Go+kXLRYajUaj6RctFhqNRqPpFy0W4xQhxBIhhBRC5IbalpGEEOIWIUShEMIrhCgKtT37Y7Tdw9F0bQ8EIUSREGJFqO0INlosNB0IIb4nhLg71HaECiHEKcCvgc3AZcDS0FoEQogEIcTdQoiFobZlMIzEaxssxso9644l1AZoQsZfgZcBV8C27wEXAHeHwqARwAnG91VSypqQWtJJAvBLY3ltt3293cORyki8tsFif/ds1KLFYgwhhIiQUrYOJK2U0gf4gmzSaCPF+K4PqRUDZJTdw1F1bTW9IKXUn4P8AJGoqnUB4ASqgf8BPwxIswSQwHeAB4F9QBuwHpjbLb8EI78tQIORbiNwfi/nXmHkm4V6u3QAew7Crlxjfa2x3v2TC3wK7OzjGqww7Izbz3WyoWorG4Baw6avgRsA0S1tCvBnoBj1xlwJrAFOHMD9uAlYB1QZx+4G7gGs/RyX28dvv9vYXwSs6OW4u9Uj1GXbWqAUyAZeB5qAOuBJwN5LHrOAvxs2O4FC4CkgGljYh10reruHAXkeCawCGoEW4GPgO72cWwIrgeONe9NmXPfrD+AZmAb8y/iNbSg300UDvbZ95Nn+u68AbjauvxPYBJzUxzFXGOduQwnSG8Ahvd0v45r/3rjmrcA7QE4v9+UZYJeRph74L3BEL+fu+H/s754BpxrLvT3PuYAfeGA4yq6D+eiaxeD4E/Bj4AngSyAGOBQ4ClUABPIAIICHjXTXAR8IIeZJKXcZafKA81EP318AO8o19DchhFVK+XwvNrwDfAvcZqQ/ULvauR+wAkcDFwVsrwaeBf4shDhKSvlJ+w4hRARwLvC6lHJ/b4ztv/cfwN9QD8zJwKNAPKpAb+cfwBzgj6jCPgFYAMxFicb+uBl4F3gT9YAfA9yBKrgv3c9x1ajffCVwLHAJ6sHd1s/5+iIceB8lXDejrvtPjfPc2Z5ICHGsYW8b6n4XApmoe56Iuq/LUP+Z14BXjUML+jqxEOL/jHPXAA8ZeV8K/EcIcZ6Usvv9n4265n8Bnkf9bx4TQnwjpXx/fz9SCDEJ+AT1v37c+H3nAS8IIVKllA8zuGt7LRCLenkAdQ3fFkKcKKX8KMCOR4DrUS9NTxvHXAv8z3i+dnfL91nUy9VyIB31krHSsK+dU1DPzCsoAU1FtbWsE0LMlVJu78Pm/d2zDagXiUuAF7sddzHqOq7o+3KEmFCr1Wj+oP5wf+wnzRJU4VgARAVsPxTlQnglYJsdMHc7XqAe/u3dtq8w8n1ykHblBmxbSbc3ZWN7DKrwfbLb9guNPE7p51xmen+rfg719msz1mON/G4+yPsR2cu2XxrXecIAjm+/ppZu24s4sJqFBJZ22/4mUBWwbgJ2ot7Is3rJWxjfk+jjTbyPe/gZqjaRHbAtFlXglRNQyzKO9RFQwwXCUG/cfx/A9fo7quCfF7DNRmctJam/a9tHvguNtA1AWsD2dFRNbUPAtgVG2uu65ZFp/LdWdr9fwGvd0t5kbD8kYFtv/6Uk49p0fw66/D/6uWf39/Z/RNVgPjmY//1wfXQ01OBoABYIIbIGkPZpKWVz+4qUcitKBE4TQpiMbS6p/NAIIWxCiATUG+Z7wFQhRHQv+f5pkHb1i5SyEVXb+ZEQIixg1yVAGbC6n+N9UkoXgBDCIoSIF0IkoX5/NDDVSNoGuIGFQojEg7CzxTiHWQgRZ5zjA1TBPPdA8xsEfjrfhtv5AEgOuIeHAZNRor63ewbSKEEOBCFEKnAE8JKUsiQgrwaUGyzN2B/IBinl5oC0TlRtIb+fc5mB04A1UsqNAce7gUdQonPygf6GbrwspawIyLsceAmYL4RobwP5Eeo/85oQIqn9g3JbfQ4s6iXfJ7qtf2B8d/zm9v8SqBp0wP/xM3pewwPhOdT/8cKA/P8PJTArBpFv0NFiMThuBg4BioUQm4UQDwkh5vWRdkcf26KAZAChWCqE2I76s9eiqvG/MtLH95LHnkHaNVCeA+KAswxbJwAnAn+VUvr7O1gIcaEQYgvqd9Whftdfjd3x0FHQ3IIqZCqEEP8TQiwXQkwbiIFCiFOFEP9DiY7DOMe6wHMME1VSyrZu2xzGd4LxPdn4PlhXV29MNL6/7WXfN93StFPcS1oHnXb2RTKqbexAznWg9PXMBOY9DVWbKUXd78DPiXQ2rAfS/Td3vzcIIWKEEI8JIcpRNbUaI8/TGcR/SSqX2IeoF612LkY9F68cbL7DgRaLQSCl/AeqYeoK1J/4J8BnQoi7eks+gCyXoRreNqL+TN8BFhvboPf71b1QOlC7BsoHqOp2+5/8QsOeFf0dKIT4AUoYylG+69NRv+tWI0nH75JSPop6w7sR1bh9I/ClEGJ/bQ4IIY4E/mOsXg+cYZxjSfdzHAR93TtzH9v3F6EkBpj3YOgtT9HHvr5s7W7nUJzrQBnI8SaUi3RxH59TejlmIL/5JdR/dQXwQyOfxah2s8GWm88C04UQRwgh7Eb+/bX7hRzdwD1IpJRVqKiJZ4wG37eBu4QQD3V7u+zt7Xgq0Ix6YwHVuL1OSnlhYCIhRG9V6aGyq8th+8lPGr1U7xRCpKHehj6VUvb29ted81E1oDMCayFCiF5dHYYL5XHgcSFEPMotcj+qdtMX7e6IRYG/z+gMNlgc9P42mTeIPNuDGmYD/9xPugMpcIuM70N62TetW5rBUo164w7mufp6ZqCzRr0bVZB/KaWsHOT5ABBCxKFcbPdIKe/utu/eAWTR3z37B/AH1IvXelSNfcUBGzrM6JrFQWL4xWMDt0nVx2E76o0zttshlwshIgOOPxTlT30noAD10e2eCCGSUVEYwbIrkGYjj76q2SsM+36PKiRWDNCs9je5jjc3IUQ4KnQ20PYIY3ug7Q5UodNf1d+Hekg73vYNv/rNA7Rxf+wCjgq0zRhi4+xB5PmFke+1hkuvC0KI9mvV3s7Vr+vD8O9vBM4TQmQG5BWNiiSqQPnxB43RtvYOcKIQoqM9SAhhBX6GCl1eNcjTnGe8mLTnnY6K1vrceBkCVQMAFdnUA+P5OVDa/0vdn8WFqAb1/tjvPTPaQ/6O+i2XM4B2v5GArlkcPNFAmRDiNWAryg8/B3Xz1wQ2zBk0oUL5VqCii65HVZ/vDEjzGnCfEOJlVHU3HfWQ78Vo1wiCXYF8DlyFeqN/B/AC/25v7JNSFgsh1qDCIw/Ex/oaKsT2bSHEqyjf8BI6H6p2pqDCif+J8ns3A8eh3hyf7eccb6CiWtYIIZ5Hha/+iKF5IXoC5Sp4TwjxN9S9uAblrz/8YDKUUvqFEFegYve3CiHaQ2czUKGz3wWKpJSVQogSVMG5E9WOtUdKuaGPrG9EBUR8KoR4AnWfLgVygPOklJ6DsbcPbgNOAt4XQgSGzh6JimgbbE/tPcAnQognUS8aV6Eazpe1J5BSfiyE+B1wkxDiEODfqD4ROSg37jY6XZEDQkrZJIR4H7jFeEHYiep3cSmqf1BvgSaBxw/knj2Hcg8vBh4cSLtfyAl1ONZo/aAa1X6N6ijkQBX8O4B7geiAdEvo7JT3a5Tf3olq5JrXLU8Lqs9BkZHmW1T/hPY8cgPSrqD3MM8DtSswTyuqf0MlKqKny34jzfnG9pcO8Hpdj3ronKhC4C5UQSOBhUaaROAx4CtU2GMzqp/IMozw2n7O8SNU4dCGelt7BJhhnGPJAI7v9Zoa+6427HYZ9v2A/XTK6+X4Htfb2D4HJabtnRULUJFLgWHWx6FqDE4G3ilvNeoFpRXVKe+0XmySBISWdrsORQO8r9NRfQkchn1bgIsP5Nr2knYhPTvluVCd7noN00a9pX9k/OYWVK3tOeDIgDR3G/lO6nZsbvf/CKph/K+oUNkWVKfWRb1dG3oJre7rnnVLs8PYN/VAnqVQfdpjuTVBQgixBPWnXSylfC/E5gwao7H678CpUsp3Q22PZuxhuHs+AK6QUj4dYnOChhDia6BRSnlUqG0ZCLrNQnOgtLvFRryPVaMZqQghjkG1+/XnXh0x6DYLTb8YDfNnohr3FqF6J498H6tGM8IQQixAuUZvRbmkV4bWooGjxUIzEJJRUSeNqJ7JfwytORrNqOVq1FhZ36IG9uwrjH3EodssNBqNRtMvY6ZmkZSUJHNzc0Nthkaj0YwqNm3aVCOl7Dc0f8yIRW5uLhs3buw/oUaj0Wg6EEL0Nj5YD3Q0lEaj0Wj6RYuFRqPRaPpFi4VGo9Fo+kWLhUaj0Wj6RYuFRqPRaPpFi4VGo9Fo+kWLhUaj0Wj6Zcz0s9BoNJqxipQ+vN4GvF4HHk8dXq/DWHbg9dZhtSaRkXFlUG3QYqHRaDTDgJR+vN7GjoK+r4K/c1mtezwOfL6G/eYdE3OkFguNRqMZiXi9jTQ1be5WwPde2KvletScYr0jhA2LJR6rNR6LJQGbLZ3IyEOwWNS62t75sVoTOpbN5rCg/14tFhqNRjNA/H4PdXX/pbJyJbW1b+L3O7ulMHcpxK3WJMLDpwSIQM+Cvn3dZAqnc+r1kYcWC41Go9kPUkoaGzdQWbmSqqqX8XprsVqTSE+/nMTEM7HZUgPe8KNGdIE/GLRYaDQaTS+0tu6msnIllZUrcToLMJnCSEo6m9TUC4mPPxmTyRpqE4eVoIqFEOJU4FHADDwtpXyw2/4c1LSCyUAdcKGUsjRgfwxqkpDXpJTXBdNWjUajcbtrqK5+hcrKlTQ2fgoI4uJOJCfnDpKTv4fFEhNqE0NG0MRCCGFGzai2GCgFPhdCvCml/CYg2cPAC1LK54UQJwIPoGaRaudeYF2wbNRoNBqfr43a2n9TWbmSurp3kNJLZORs8vIeIjX1x9jtE0Jt4oggmDWL+cBuKWUhgBDiZeC7QKBYHALcaCx/ALzevkMIcTiQCvwXmBdEOzUazThDSj/19euorFxJdfU/8fkasdkmkJl5E6mpFxAVNTvUJo44gikWE4C9AeulwIJuabYC56JcVecA0UKIRMAB/BZVy1jU1wmEEFcCVwJkZ2cPmeEajWZs0tz8pdFQ/SIuVylmczTJyd8nNfVC4uKORzlENL0RTLHoLSSg+4Tfy4DHhRBLgPVAGeAFrgHellLu3V9kgZTyKeApgHnz5unJxDUaTQ9crjIqK1+isnIlLS1bEcJCQsKp5Oc/TGLimZjNEaE2cVQQTLEoBbIC1jOBfYEJpJT7gO8BCCGigHOllA1CiKOAY4UQ1wBRgE0I0Syl/HkQ7dVoNGMEr7eJmppXqaxcicPxPiCJjl7A5MmPk5z8Q2y2fqec1nQjmGLxOTBZCDERVWM4Dzg/MIEQIgmok1L6gV+gIqOQUl4QkGYJME8LhUaj2R9+vweHYxWVlSupqXkDv7+NsLB8cnLuIjX1AiIiJofaxFFN0MRCSukVQlwHvIsKnX1WSvm1EGI5sFFK+SawEHhACCFRbqhrg2WPRnMg+P0uGhs3UF+/Hp+vGZstFZstzfhOxWpNxWpNQAg9cHMokVLS1PR5R4c5j6caiyWRtLRLSU29kJiYI8dsJ7nhRkg5Nlz98+bNkxs3bgy1GZpRis/npLHxUxoa1lFfv5bGxk+NoRwEQliQ0tPjGCEsWK3JHeLRLiRd19OM9cQR23gqpcTna8brre8Yw8jrrcfpqKZ1bxVtVVW46mpxt9Th9TZispoxh9uwRIRhjrRhiQrDEh2GNTYMc4Qdk8mGEFaEsGIyWTuWO9ctvWzrb73rMR5PNVVVL1NZuZK2tp0IYScp6SxSUy8kIeFUTCZbqC/rqEEIsUlK2W/Eqe7BrRmX+HxtNDZ+Qn19uzhsQEoXYCIq6jAyMq4hLu54YmOPxWKJw+t14HZX4nZX4vFUdiwHrre2fovbXYGU7l7OaOoQlp6C0nXdak3GZDqwR9Pvd3cU9GrguvpuhX/PbYHpwNd7xiYgDYiJxOSJwUIM0ufH53Pj8XtAeqHNCx4vNPjA4gWrF8x95DfExMUtJDv7VpKTz8ViiR2Wc45XtFhoxgU+XwsNDZ9QX7+WhoZ1hjh4ABPR0XPJzLye2NjjiY09Bqs1rsfxVmsCVmsCkZHT93seKSVeb0OfgtL+aWvbhdtd0ctAdAACqzWpm6Ck4Pd7+hQBv79tv3aZTGFYLHGYiUU4Y6ApGmpSEeXhsDcM6qOgOQqc0YQlJhGRmULUxDSipqcTOzMDe1p479e1xYezyEnbnjace5w4C9VyW2EbzpIW/G1uJSAWJSCWNLDnmrFnW7Blm7BlmrFnmrCmm7CkCBA+pPR0fPx+T6/rJpOdxMQzCAsbHyHzUkp8jT7c1W481R481R7cVZ3LtlQb2bcG91poN5RmTOL1NtPY+D/q69dSX7+OpqbPkNILmImOPpy4uIVGzeGYkA3hoNw/Tf3WWNo/JpMdiyXO+MRjscQZI5l23WaxxGMmBk+xHde3NpzbLLRs8dC8rRlPZac7zZZhI2p2FJGzI4k6VH1HTI3AZB2adhgpJZ4ajxKRPU4lIAHfrhIX0htQ/pghLDuMsIlhhOeFEzax67I12Tpm2h+klHgbvL0W/N3X2wVCunsvq81RZmKPi2X2fw6uI+FA3VBaLDRjAq+3iYaGjztqDk1NG5HSixAWoqOPIC7ueOLiFhITczQWS3SozR0ypJS4K9y0bGuheVszzVubadnWQuu3rR0FsbALImdEKmE41PieFYktObR+fb/Xj6vU1aVG4iw0hGVPWxdhAzBFmgifqITDnm3HHG5G2ATCKjDZTAhbP98DSBeYRpjFgMVJSom33jvggt9T7UF6+ij8o81Yk61Yk63Ykm1YUwKWk61YUwKWk62YwwfXFqbbLDRjGq+3gYaGjzraHJqaNgM+hLASHT2frKxbiItbSGzs0ZjNkaE2d0jwOX20ftuqhGFrM83blDB4qjsLVXumncjZkSSekahqDLOjCJ8Sjsky8qK2TBYT4bnhhOeGwwk993e4uIyaSGCtpOGjBvwuP9Itu9ZOhhJBv8IjfVIV/jWePu0wR5s7Cviw7DCiD4/GltJZ2FuTrV3WzWEjMxBCi4VmVODx1NPQ8GGHODQ3bwH8CGEjJmYBOTm/MGoOR42ZHrm+Nh8NHzZQt6oOx3sOWr5q6WiHNoWZiJwZSeJZiZ2upNlRWBPGzrDZ5kgzkTMiiZyxf7GXfon0SPxuJR5+j/Ht3s+3Rw4oTX/7AaLnR/esARjL1qSRW/gfKFosNCMSt7uSxsZPA8ThC0AihJ2YmCPJybmTuLjjiYk5ErO598bX0YaUkpYvW5Q4rHJQv74e6ZIImyD2mFiyf55N1Owoog6NInxSOMI8Nvz3g0WYBMIuMNlHXu1pLKHFQhNS/H4Xra3baW7eSnPzNlpattHcvBWPpwpQUTwxMUeRm3s3cXHHEx29YFjmGx4uXBUuHKsdOFY5qFtd1+Gnj5gRwYRrJhB/cjxxx8Vhjhgbb6ea0YsWC82wIKXE7a6guXmrIQjbaGnZSmvrdiNKSQlDRMQMEhPPICpqNlFRc4mJmY/JZA+x9UOHr81Hw0cNShxW1dGyrQUAa5KV+MXxxJ8cT8LiBOwTxs5v1owNtFhohhyfz0lr67c9hMHjqelIY7dnERk5m8TEs4iKmk1k5KGEh0864M5oIx0pJS1ftXSIQ8P6BvxOf4drKe/BPOIXxxN1WBTCpN1KmpHL2HoyNcOKqi3so7l5WxdhaG3dTntLrMkUTmTkTBITv0tU1KGGMMzGao0PrfFBxF3ppm51XYd7yV2henRHHBJBxlUZna6lSO1a0owetFhoBoTP10Zr6zc92ha83rqONHZ7DlFRs0lOPofIyNlERc0mPHzSiB0TaajwObu5lrYq15Il0ULC4gTiT44nfnE8YZljp61FM/7QYqHpgdNZSkvL1i7C0Nq6A/ADYDJFEBk5i+Tkc4mKOpTIyNlERs7qdZiMsYiUkpavA1xL6wzXklUQ+3+xTPzVRBJOTiBqjnYtacYOWiw0Hbhc+9i161pqajqmQicsbCKRkbNJTv5+hzCEh+ePu6G53VVuHO85OsJa3eWGa2laBOlXppNwcgKxx8diidKPlGZsov/ZGqSUVFQ8y+7d/w8pXeTm3k18/ElERs4ctyN5+loN19L7DhyrHTRvaQbAkmAhfnE8CScnKNdSlnYtacYHWizGOW1te9i580ocjveIjT2OqVOfHpczivm9fpo+b8LxvoP69+tp+F8D0i0RVkHMUTFMvH8i8SfHEz0nWneG04QeKaGsDD77TH0iIuCuu4J6Si0W4xQp/ZSVPU5h4S8QwsTkyU+QkXHluHEvtbc71L9frwRibT2+JhXBFTUniswbMolbFEfcsTpqSTMCaGiAjRthw4ZOgSgvV/usVjj99KCboMViHNLSsp0dOy6jsfF/JCScypQpfx4X8wI4S5w43nMocVhT3xHSGpYfRsr5KcQviifuhDhsSXqWNU0Icbth27auwrB9e+f+KVNg0SKYP199DjsM7MHvxKnFYhzh93vYu/dhioruwWyOZNq0F0hNvXDMzBHQHU+tB8cHDhzvKddS2241QZA1xUr8onjiT4onflE8YTm63UETIqSE3bu7CsOWLUowAFJSYMECuOACJQxHHAHxoemjpMVinNDUtIUdOy6juXkLycnfZ/Lkx7HZUkNt1pDiawlolH7PQfMXzSDVENFxx8eRcW0G8SfFEzkjcswKpGaEU1nZKQqffQaffw4Oh9oXEQHz5sENNyiBmD8fsrJghPxXtViMcXw+J8XF91JS8mus1iRmzPgXycnfC7VZQ4Lf09ko7XjfQeP/GpEeo1H66Bhy78klflE80UdED9nsbxrNgGluhs2bu4pDcbHaZzbDzJnw/e93CsP06WAZuUXyyLVMM2gaGj5hx46f0Nq6nbS0JeTn/xarNSHUZh00HeMsGRFL9euMRmkBUYdFkbk0k/hF8cQeE6sbpTXDi9cLX3/dVRi++gr8qiMrublw5JGq1jB/PsyZA5Gja1IuLRZjEJ+vhcLC2ykrewy7PYvZs/9LQsIpoTbroHAWdzZKO9Y4OobwDp8UrhqlT4on/oR4rIljZ9IfTYjxeKC1FVpaev8E7istVa6kTZvUdoCEBCUIZ5/d2c6QkhLa3zQEaLEYY9TVvcfOnVfgdBaRkXEteXkPjKo5p91Vbuo/qMexRgmEs8AJgDW1W6N0tm6UHte0tSk3z0AK9APd7/H0f/527HaYOxeuuKIzOik/f8S0MwwlWizGCB5PPQUFy6ioeIbw8Mkcdth64uKODbVZ/eJt8FK/TolD/Zp6Wr5Ug/CZY1SjdOb1mcSfFE/EIRG6UXo8IyV88QW8+Sb8+9/qTX6gCKEajyMjOz/t6xMmdN0euK+3T/d9UVEjup1hKBkfv3KMU1PzJjt3Xo3bXUFW1i3k5t49Yqca9bX6aPi4gfo1SiCaNjaBX80pHXtMLCk/TiH+xHiiDo/CZNGN0uMapxM++ECJw7//rVw+QsBRR8EvfwnJyQMr3MPDx+Sb/nCjxWIU43ZXs3v3DVRVvUxk5GxmznyDmJh5oTarC353QMTSGgeNnzSqYTQsgugF0eTcnkPciXHEHhWr51DWQHU1/Oc/qgaxapVyC0VGwimnwL33wmmnjQn//2hEi8UoREpJVdXL7N59A15vA7m5y8nOvhWTKfQ9j6VP0ry1uaOXdP2H9fhb/CpiqX0YjRPjiD125I/Q2uLz8WZNDWUuF2EmE3aTqeO7Y1mIHvvCuu23mLQI9omU8O23qubw5pvwySdq24QJcPHFcNZZsHAhhIWmjUpKSY3HQ7HTSZHTSbHLRbHT2fGp83qxCYHdZMJm3G+byXRQ2zqWD2KbXQjCzMGNAAzq0yqEOBV4FDADT0spH+y2Pwd4FkgG6oALpZSlQojDgCeAGNSUa/dLKV8Jpq2jBZerjJ07r6a29t9ER89n2rRniYycETJ7pJS0bm/tFIe19Xgdak7tiOkRpC1JI/7EeOIWxmFNGPkRSz4pWVtfzwsVFfyrupqW9tDHQWCCPoWkh/jsR4RiLRYSLRYSrdbOj8VCrMUyutpzPB748MNO91JBgdp++OHKvXTWWWoIi2H4TT4p2dcuAN2EoH29rdt/INpsJicsjBy7ncOiovBIiVtKXH4/br8ft5S0+f00+HxdtrkCv/1+XFIO2e+YHx3NhsMPH7L8eiNoYiHU9Gh/BBYDpcDnQog3pZTfBCR7GHhBSvm8EOJE4AHgIqAVuFhKuUsIkQFsEkK8K6WsD5a9Ix0pJeXlT1NQsAwpPeTn/5bMzJ+FZBa6tqI21ebQbYwle46dpHOSlDicGIc9Pfjj1QwV37S08EJFBX+rqqLU5SLGbOa8lBQuTktjTlQULr8fp/GAO/3+zvXu3wH797ev+3eTz0e1x9Nnvr792G4GEgLEI1BMEgLXu+2zD2eNp74e3nlHicPbb6uB8ex2NcbRzTfDGWeo2sQQ4/L7KelW+AeKQanLhbdboZ1ktZJjtzMjIoLTEhKUMBjikBMWRtwQibOUEm8vQtNdVAayLcUa/BexYNYs5gO7pZSFAEKIl4HvAoFicQhwo7H8AfA6gJRyZ3sCKeU+IUQVqvYxLsWira2QHTuuoL5+DXFxC5ky5S9EREwatvO7KlwqnNUQB+eegHBWQxjiT4wnPG9kNqr3RZXbzUtVVfy1ooJNzc2YgVMSEng4P5+zEhMJD6jWhzr42Ov3U+/1Uuv1UuvxUOvxUBewXOvxdOwrcjrZ1NRErdeLcz81o0iTqUctpVeRCdgXa7FgGmhBWVDQ6V768ENj6WHNAAAgAElEQVTVcS0lBc49F848ExYvHnTHtEavt0dNIHC9on2MJQMTkGG3k2O3c3RMTA8hyA4LIzLI7px2hBBYhcAKw3bOwRBMsZgA7A1YLwUWdEuzFTgX5ao6B4gWQiRKKWvbEwgh5gM2oCCIto5IpPRRWvoH9uy5HSHMTJnyZ9LTLw/6MOIeh4f6dfVq+O41Dlq/UZ2NLHEW4hbGkXljJvEnjs5wVqfPx5u1tbxQUcF/6+rwAXOjovh9fj4/Tk0l1Rb6dp/esJhMJNlsJB2gfa0+X+/i0ovQFDud1Ho8OLxe+nKQCMAiBMJYNhnLHd8+H8LjweRyIXw+RG4upqVLEbfeisluR9hsnWm3bUMIgcnIK3C5R77d9nukpMTlot7r7WKfTQiyjcK/t1pBpt2OVbchHRTBFIveSpHu/8FlwONCiCXAeqAM6Lj7Qoh04K/AJVLKHq9IQogrgSsBsrPH1hDbLS3fGsOIf0JCwulMmfIkYWGZQT1n85fNFC8vpvrVahXOGmEi9thY0i5JI+7EuFE78Y9fSj5uaOCFykr+UVVFg8/HBJuNZVlZXJSWxoxRNuzCgRBhNhNhNpN1AA3EPimp93qp60VYHF4vXinxS4kEpNuNv6gIWViIf88epNOJ32xGZmbinzgRmZuLPzpapYWO4/woN4y/2/YuafpIK6XELATHxMb2EINUQ4w0Q08wxaIUyApYzwT2BSaQUu4DvgcghIgCzpVSNhjrMcB/gDuklJ/2dgIp5VPAUwDz5s0butaiEKKGEf8NRUXLMZujmT59JSkp5wf1Db55azNFy4uoebUGc7SZrGVZJJ6RSMyCGEy20fsWtqu1lb9WVrKyspI9TieRJhPnJidzUWoqJ8THY9aFSq+YhehwP/U6Z2Jpaad7ac0aNZx2XJwKaz3rLDj1VIgdn9PxjmWCKRafA5OFEBNRNYbzgPMDEwghkoA6o9bwC1RkFEIIG/AaqvH7H0G0cUTR1LSZ7dt/QkvLVpKTf8jkyX/AZgteTHnTF00ULy+m5rUazDFmcu7MIXNp5qiIWuqLOo+HV6qqeKGykk8bGxHASfHx3JObyzlJSUSNk962B4WUquG5okINpd3+CVwvKlID5AFMmgTXXafaH/7v/9SMbZoxS9CeHCmlVwhxHfAuKmDjWSnl10KI5cBGKeWbwELgASGERLmhrjUO/yFwHJBouKgAlkgpvwiWvaGmvv5DvvjiBGy2FGbMeI3k5LODdq6mLU0U3VNE7Ru1mGPN5Pwyh8yfZWKNH50Pu9vv5+3aWl6orOSt2lo8UjIjIoLf5OVxfmoqE4ZhFrERy0AEIHC5W4MwoIbTTkmB1FQ1v8JFF6kaxNSpumf0OELIIYz1DSXz5s2TGzduDLUZB4WUfjZtmo/HU8m8eduwWoMzE1bTpiaKlhdR+2YtljgLmTdmMuGGCVjjRp9ISCn5rKmJFyoqeLmqijqvlxSrlQtSU7koNZXDoqJGXeP7gOlNAPYnBv0JQFqa+u6+3L6ekAC6UXjMIoTYJKXsd+gHXScfAVRVvUxz8yamTXs+KELRuLGR4nuKqX2rFku8hdzluWTekIkldvTd/qK2NlZWVvLXykp2trURZjJxdlISF6WmcnJ8/NjqLe33qzkS1q6F9euVC+hABGDGjN5FQAuA5iAYfaXFGMPnc1JYeBtRUYeRmnrhkObd+FkjRfcUUfd2HZYECxPvm8iE6ydgiRldt73B6+Wf1dW8UFHB+oYGAI6PjeXW7GzOTU4mdqy0Q0gJ33yjxOGDD2DdOqipUftyc5Xbpy8BSE2FxEQtAJqgMUaestFLWdnjuFzFTJ369JD1n2jcYIjEO4ZI3D+RCdeNLpFw+nysMYbdeKO2Fqffz5TwcO6bOJELUlLIDR9dHQB7RUrYvr1THNauVQPpAWRnw+mnq3GRFi5UYqHRhJDRU3qMQTyeOkpK7ich4VQSEk4adH4NnzRQdE8RjncdWBItTHxgIhOunYAlemTe5jqPh4K2NvVxOjuX29ooM9wsiRYLl6WlcXFaGkdER4/udggpYdeuTmFYu1a1LQBkZqqQ04UL4YQTlDiM5t+qGXOMzFJknFBcfB9ebyN5eb8ZVD4N/zNEYpUDa5KVvF/nkXFNRshHdfUbg7S1C8HuADEocDp79L5Ns9nIDwtjUXw8+eHhzImK4pSEBGyj1bUipRryIlAc9hldjdLT4cQTlTAsXDhmZ1fTjB20WISItrZCysoeJy1tCVFRsw4qj/qP6im+pxjHew6syVbyfpNHxtXDKxIuv5893WoGhcZyYVtbl5E1LUKQY7eTHx7O/JgY8sPDyQ8LIz88nLzw8FExPs5+kRL27OkUhw8+gLIytS8trbPWsHAhTJ6sxUEzqtBiESIKC29DCAsTJy4/4GPr19dTdE8R9WvqsaZYyX84n4yrMjBHBqewbfB6e60ZFLS1UepydRnDJdJkIj88nGkREZyemNghBvnh4WTb7WMrWglUhFJgm0NJidqektJVHHSfBM0oR4tFCGhs/Izq6lfIybkDu33gwzLXrzNE4oN6rKlW8n+XT8ZPMzBHDJ1IlLlcPLVvH7sChKG2m7soxWolPzyc4+PiuohBfng4KVbr6G5X6I+Skq7iUFSkticlKVG45RYlENOna3HQjCm0WAwzUkoKCpZhtaaQlXXLgI5xrHVQdHcRDesasKXZyP99PhlXDq1IAOx1Oln4xRcUOZ3kGCLw/eTkLmKQFxZG9FgJVe0Pvx+Ki+HjjzvFobBQ7UtIUOJw001KHA45RIetasY04+SpHznU1LxBQ8OHTJ78JyyWvmdJkFJS/4GqSTSsb8CWbmPSo5NIvyIdc/jQu5vKXC5O3LqVGo+HT+bOZX5MzJCfY0RTUwNffqnGPfryy87l5ma1Py4Ojj8ebrhBicPMmVocNOMKLRbDiN/vobDwViIippGefnmvaaSUON53UHxPMQ0fNWDLsDHpMUMkwoLTJlHucnHiF19Q6XazavbssS0UbW2q41u7ILR/2kNYQdUaZs2CJUvU9xFHwOzZqoe0RjNO0WIxjJSX/4W2tp3MnPkGJlPP8Zjq3quj6JdFNP6vEdsEG5Mfn0zaZWlBEwmASrebRVu3UuZy8e6hh3LkWBla2udTLqPuorB7t3IvAYSFKffRKaeomsKsWeqTnq7bGzSabmixGCa83kaKiu4mNvY4EhPP7LG/8uVKvv3xt9gz7Uz+02TSf5KOyR5cN0e1282iL76g2Onkndmz+b/RKhSVlT1F4euvVS0CVMGfn6+E4LzzOkVh0iRdW9CMaqpbqnl/z/t4fB4uOvSioJ5Li8UwUVLyGzyeavLz/9MjWsjj8LD7Z7uJPiKaOR/OCbpIANR6PJy0dSuFTif/mTWL4+Lign7OQdPcrEQgUBS++qpziAxQIauzZsFPf9opCoccMui5njWakYDT6+Tjko9ZXbiaVQWr2FKxBYC56XO1WIwFXK4ySkt/R0rKecTEHNFj/57b9+Cp8TD7v7OHRSjqDKHY0drKW7NmcUJ8cIZEHxTV1SoCKVAY2iORACIi1KB6Z57ZKQqzZimx0GjGCFJKtlVuY3XhalYXrmZ98XqcXidWk5Wjso7ivhPuY3H+Yg5PPzzotmixGAb27LkTKX1MnPirHvsaNzSy78l9ZP4sk+g5fUdHDRX1Hg8nb93KNy0tvDFzJiclJAT9nANGSvjsM3j8cfj739Uw3CaT6u08dy5cckmnKOTl6WgkzZikrLGM9wrfY1XhKt4rfI+qlioADkk+hJ8e/lMW5y3m+NzjibJFDatdWiyCTHPzNioqVpCZeSPh4RO77PN7/ey8aie2DBu5y3ODbkuD18sp27axraWF12bO5NTExKCfc0C0tcErryiR2LQJoqPhyivVjGyzZsFYGGFWo+mDZncz64rWddQevqn+BoCUyBROyjuJxXmLWZy3mAkxA+/AGwy0WASZgoJbsFhiycm5vce+ssfLaP6imRn/nBH0kWGbvF6+s20bm5ub+deMGZw+EoSiqAieeAKefhrq6lTbwh//qEQiOvi1LI0mFPj8PjaVb2JVwSpWF67mk72f4PF7CLOEcVzOcVx62KUszlvMrNRZmIZo2oKhQItFEKmrW43D8S75+Q9jtXZ19zhLnRTdWUTCaQkkfS8pqHY0e72c9uWXfNbYyN9nzOCspOCeb7/4/bB6tRKFt95SrqSzz4brrlOd3nTIqmYMUugoZHWBqjms2bMGh9MBwJy0Odx45I0szl/MMdnHEGYJC7GlfaPFIkhI6aOg4GbCwnKZMOG6Hvt3/2w30ieZ/PjkoI6l1OLzccaXX/JJQwMvHXII30tODtq59kt9PaxYAX/6k5rTISUFbr9dRS1lZobGJs2oREpJXVsdEdYIwixhI3IssnpnPWv2rOmoPRQ6VHBGZkwm50w7h8X5i1k0cRHJkSF6Hg8CLRZBorJyJS0tW5k+/UVMJnuXfTVv1VDzag0TH5hI+MTg+eNbfT7O+vJLPmxoYOX06fwgFJFC27apWsTKldDaCkcfDXffDeeeC3Z7v4drNI42B5+VfcaGsg1sKNvAZ2WfUdOqpps1CzPR9mhi7DFE26K7LPe2rcd+e3THcoQ14qCFx+1z82nppx21h8/3fY5f+omyRXFC7gksXbCUxfmLmZo4dUSK20DQYhEEfL5W9uy5g+joeaSk/KjrvlYfu67bRcQhEWTdlBU0G5w+H2d/9RUf1Nfz/LRp/Dg1NWjn6oHHA6+9phqsP/xQ9ZS+4AK49lqYM2f47NCMOtw+N9sqt7GhdEOHOOys3QmAQDA9eTpnTDmDWSmzcPvcNLmaaHQ10uRuosmtlhucDZQ2lqrtLrXdL/39ntskTB2C0puY9Latrq2O1YWrWVu0lhZPCyZhYv6E+dx+7O2cnH8yCyYswGruOVrDaESLRRAoLX0El6uU6dNX9phXu/jeYlzFLg5bdxgmW3Aar1x+P9/7+mveczh4dupULkpLC8p5erBvHzz1lPqUl6vw1ocegp/8RI23pNEEIKWkqL5IiYIhDpvLN+PyuQAVDbRgwgIunn0xR2YeybyMecSGHfgoA1JKWj2tHWLSLiDtyx1i04vwNLmaKG8q77LfJ31d8p+UMImLD72YxXmLOWHiCcSFjYIOrgeBFoshxu2uoqTkQRITzyQu7vgu+1q+bmHvw3tJuzSNuOOC84dy+/18/+uveaeujr9MmcKS9PSgnKcDKeGjj1Qt4tVXweuF73xHRTideqruC6HpoN5Zz+dln3dxJ7X3IQizhDE3fS7XHHENCyYsYEHmAnJic4bEZSOEINIWSaQtkrSowb04SSlxep0dYmI328mKDZ6HYCShxWKIKSpajs/XSl7er7tsl37Jzqt2Yo41k/ebvKCc2+P386NvvuGt2lqemDyZyzMygnIeAFpa4G9/UyLx5ZdqCO8bboCrr1ZjLmnGNR6fhy+rvuziTtpes71j/7SkaXxn0nc6hGFWyqxR4a4RQhBuDSfcGk5K5PgaLUCLxRDS2rqT8vI/k5FxBZGR07vsq1hRQcNHDUx9diq2JNuQn9vj9/Pjb77h9Zoa/jBpEldNCFIHnl27VETTc89BQwMceij85S9w/vlqCA7NuENKSUlDSQ93UptXDeSYHJHMgswFXDDrAhZMWMARE44Ys66asYwWiyGksPDnmExh5Obe3WW7u8ZNwc0FxB4bS9olQ99+4PX7uejbb/lXTQ2/z8/nuqEORfX54O23VVTTu++CxQI/+IFqsD76aN03YpzR6Grs4k7aULqBypZKAOxmO3PT5/LTw3/KgswFLJiwgNy43FEbAaTpRIvFEFFf/xE1Na+Rm7scm61r5FHhLYX4Gn1MeWIKwjS0D41PSi7Zvp1Xqqt5KC+PpVlD6D+trYVnnlG9rIuKICMDli+HK66A4Wo014QEr99LcX0xBY4CdtftpqCugAJHATtqd7CjZgcSCcCUxCkdUT8LMhcwO3U2NvPQ15w1oUeLxRAgpaSw8GZstnSysm7qsq9+fT0Vz1WQ/fNsImcM7TDZPin5yfbtvFhVxQMTJ7IsO3toMt64UdUiXn4ZnE7Vs/o3v1E9ra0j36+sGRitnlYKHYUdQrC7bjcFjgIK6gooqi/qEvUTZgkjPz6fqYlT+fHMH3e4kxLCdZTbeCGoYiGEOBV4FDADT0spH+y2Pwd4FkgG6oALpZSlxr5LgDuMpPdJKZ8Ppq2Dobr6nzQ2fsrUqU9jNncKgt+tBgoMyw0j586cIT2nX0qu3LGDFyorWZ6by89zBpm/2w3/+IdqsP70UzX/w5IlytU0c+aQ2KwZfhxtjh61g3ZR2Ne0r0vauLA48uPzmZcxjx/N+BH5CflMSphEfnw+6dHpI2qcIs3wEzSxEEKYgT8Ci4FS4HMhxJtSym8Ckj0MvCClfF4IcSLwAHCRECIB+CUwD5DAJuNYR7DsPVj8fjeFhb8gMnImaWlLuuzb+9u9tH7byqy3ZmGOGLoZ2fxScvXOnTxbUcFdOTncmZt78Jnt2wdPPqn6RlRWquHAH3lECcVonTlvHCGlpLy5vNfawe663R1jELWTHpVOfkI+i/MWdwhBuyjoWoJmfwxILIQQM6WUXx1g3vOB3VLKQiOPl4HvAoFicQhwo7H8AfC6sXwKsFpKWWccuxo4FXjpAG0IOvv2PYHTWcCsWW+j9FHRVthG8fJiks5NIvH0oRvhVUrJ9bt28VR5ObdlZ3P3wQiFlPDxx/CHP6i+ET4fnHYaXH89LF6s+0aMMNqjjXbW7uwUA0MYCh2FtHpaO9KahImc2BwmJUzqUTvIi88j0qZnDNQcHAOtWTwphLABK4AXpZT1AzhmArA3YL0UWNAtzVbgXJSr6hwgWgiR2MexPWJBhRBXAlcCZA+Vv/4A8HjqKSpaTlzcIhISTu3YLqVk13W7EBbBpEeGrs+BlJKlu3fzp337uDkri/smTjywKJPWVnjpJeVq+uKLzr4R11yj5qjWhByf38fO2p1sLt/MlootbC7fzBcVX3SpIYRZwsiLzyM/XtUQAmsHObE5o6K/gmb0MSCxkFIeI4SYDPwE2CiE+Ax4Tkq5ej+H9VaKyW7ry4DHhRBLgPVAGeAd4LFIKZ8CngKYN29ej/3BpqTkAbxeB/n5D3UptGteraHunTryf59PWObQDDkspWRZQQGPlZVxY2Ymv87LG7hQFBWpvhHPPKPmjZg5E/78ZzVek56bOmS4vC6+qvqKLRVb2FK+hc0Vm9lWua2jpmA325mdOpsfHPID5qTPYXrSdPIT8smIztDtB5phZ8BtFlLKXUKIO4CNwGPAHKFKq9uklK/2ckgpEBjHmQl0aVGTUu4DvgcghIgCzpVSNgghSoGF3Y5dO1BbhwOns5jS0kdJTb2Q6OjOwfG8TV523bCLqMOimHDd0HSMk1Ly88JCfldayvUTJvDb/Pz+hUJKeP995Wr697+Va+mcc9S8Eccdp/tGDDNNria2Vm7tEIUt5Vv4uvprvH4vADH2GA5LO4wr5l7B3PS5zEmbw7SkabqWoBkxDLTNYjZwKXA6sBo4U0q5WQiRAXwC9CYWnwOThRATUTWG84Dzu+WbBNRJKf3AL1CRUQDvAr8SQsQb6ycb+0cMe/aoQK2JE+/ruv3OPbjL3cx8dSYmy+Df/qSU3LlnD7/Zu5erMzJ4dNKk/QtFUxO88IJyNW3fDsnJcNttat6IoeyDoemTmtYaJQqGK2lLxRZ21e7q6JuQEpnCnLQ5nDb5NOakzWFO+hzy4vN0bUEzohlozeJx4C+oWkRb+0Yp5T6jttEDKaVXCHEdquA3A89KKb8WQiwHNkop30TVHh4QQkiUG+pa49g6IcS9KMEBWN7e2D0SaGraRGXlSrKybiUsrLOtpGlzE2V/KCPjqgxiFsQMybmWFxdzf0kJV6Sn8/jk/UyUtGOH6huxYoUSjCOOUKLxgx+oIcI1Q46UktLG0i6isLl8M6WNpR1pcmJzmJs+lwtnXcic9DnMTZ9LelS67tGsGXUIKft39QshlkopH+m27WdSykeDZtkBMm/ePLlx48agn0dKydati2hu3saRRxZgsajwUumTbD5qM84SJ/O3z8caN3j3wX1FRdxZVMSlaWk8PXUqpu4FjM8H77yjXE2rVqkOcz/6kXI1LegeS6AZDH7pZ1ftri7tC1vKt1DbVguouRamJU1jTvoc5qQpUTgs7TAdjqoZ8QghNkkp5/WXbqA1i4uBR7ptW4KKYhpX1NW9TX39B0ya9GiHUADs+/M+mj5vYvqL04dEKH5dUsKdRUVclJrKX7oLhcMBzz6rGq0LC9UwHPfeq4bhGM5JjsYYbp+b0sZSShpK2Nuwl5KGEkoaSvi6+mu2Vm6l2d0MgM1sY2bKTM6ednZH+8Ls1Nk6LFUzptmvWAghfoxqZ5gohHgzYFc0UBtMw0Yifr+XgoJbCA+fREbGVR3bXRUuCn9RSPxJ8aScN/hhi3+7dy8/Lyzk/JQUnps2DXO7UGzbptoiVq6EtjY49lh48EE9DMcAkFJS3VrdIQAdgtDYuVzRXNHRrtBOckQyUxKnsOTQJUoY0udwSPIhevwjzbijv5rF/4ByIAn4bcD2JmBbsIwaqVRUPEdr6zfMmPFPTKbOwqLgpgL8Lj+T/7SfNoUB8mhpKcsKCvhhcjLPT5uG2euFN95Qrqb16yE8XIW8XnedGh5cA0CLu4W9jXu7ikHA+t6GvR0zsLUTbgknOzab7NhsZk6a2bGcHZtNVmwWWTFZhFuDN0e6RjNYduxQAzAIAb/7XXDPtV+xkFIWA8XAUcE1Y+Tj9TZTVHQXMTFHk5T0vY7tdavqqHqpity7c4mYPLj5HP5YVsbS3bs5NymJlUlJWB54QI34WlYGubnjdopSr99LeVP5fsWgrq1r/INJmEiPSic7NpvD0w/nnGnnkBWT1UUQEsITdEOzZtTh9cKbbyov9PvvK6fCBReoaPlg/p37c0N9ZHTIa6JrpzgBSCnl0IT8jAJKS3+L213BjBn/6ihgfG0+dl6zk/Ap4WT/fHA9yP9bW8t1u3bxXbOZFx9+GOtLL6nB/U4+WQnGaaeBeejGlxrJOL1OHv30Ud7a9RYlDSWUNZb1mPc4Liyuo/A/KvMoVRsIEIOM6AzdR0Ezpti3T80z9tRTajkrC+67Dy67bHhmDOivZnGM8R0dfFNGLi5XBSUlD5GUdC6xsUd3bC95sARngZND3zsUk/3gY+TbfD6u3b6daVVVvHLhhdjsdrjySjXi67RpQ/ETRgVSSv717b+4efXNFNUXsWDCAo7POb7TNWSIQVZsFjH2cfOeohnHSAlr1qj3xddfVwGQp56q1k8/fXjfHwfaKS8fKJVSuoQQC4HZqNFiBzJG1KinqOiXSOkiL++Bjm2tO1opebCElAtSiF8Uv5+j++fBkhIKPR7WPPQQ9t/9Di6+GGLGV2G4uXwzN757I+uL1zMrZRbvXfQei/IWhdosjSYkOBzw/POqPWLHDuV5vukm1bc2VMO4DTR09l/APCHEJOAZ4E3gReC0YBk2Umhp+Yby8qeZMOFaIiImA+oNeOc1OzGFm5j028ENFLirtZUHi4u54L33OGH+fNVwPY6oaK7g9vdv57kvniMxIpEnT3+Sy+dejtk0PlxuGk0gmzaptoiXXlIBj0ceOXL61g5ULPxGj+xzgEeklH8QQmwJpmEjhcLCWzGbo8jJuatjW9WLVdSvqWfyE5OxpR58CGX7cONhbjcPP/MMfP55/weNEZxeJ7//5Pf86qNf4fK6uOmom7jzuDuJDdNzaGjGF21t8MorSiQ+/xwiIuDCC+Hqq2HOnP6PHy4GKhYeo8/FJcCZxrYx33rocKyltvYtJk58AJstCQCPw8Pum3YTvSCajCszBpX/v6qredfh4LGnniLthz+EzMyhMHtEI6Xk1W9f5ebVN7Onfg/fnfpdHlr8EJMTJ4faNI1mWNm1S7mZnntOuZ2mTYPHHlNe6JE479hAxeJS4CrgfinlHmNwwJXBMyv0SOmnoGAZdnsWmZk/69he+ItCPLUeDl11KMJ08HFqTV4vS3fvZk5tLVe/8w7s3j0UZo9otpRvYem7S1lfvJ6ZKTN1u4Rm3OH1qkGgn3gCVq8Gi0UNBn3NNWqq+5Ecyd2vWBjTo94mpbywfZuUcg/wYN9HjX6qql6iuXkT06Y9j9msOmY1fNJA+Z/Lybwpk6hDowaV/z1FRexzu/nXXXdhueoqSE8fCrNHJBXNFdyx5g6e3fJsR7vEZXMvw2IK6hTwGs2Ioby8M+y1rEw5EZYvh8svHz2Pfr9Pq5TSJ4RIFkLYpJTu4TAq1Ph8TgoLbyMq6jBSU5VG+r1+dl61E3umndy7cweV/5fNzTxSWsoV337LgqIiuPXWwRs9AmnvL3H/h/fj9Dq56aibuOO4O4gLiwu1aRpN0JES1q5VbRGvv65qFSefrEbsOeMMVasYTQzU3CLgY2N8qJb2jVLKIHcwDw1lZX/A5Sph6tRnEMYcA2WPldGyrYUZr87AEn3wd9kvJVfv3Em8EPzqF79Q816nDH48qZGElJLXtr/GslXL2FO/h7OmnsXDix/W7RKacUF9vYpgeuIJNaVMfDz87Gcq7HXyKH4EBlrq7TM+JtQggmMWj6eW4uL7SUg4lYSEkwBw7nWy5649JJ6RSNLZSYPK/4WKCj5ubOTZNWtI9Plg2bKhMHvE8EXFFyz971LWFa9jZspMVl+0mpPyTgq1WRpN0Nm8WQnEiy+q6e7nz1fTy/zwh2pIt9HOQOfgvifYhowUiovvw+drIi/vNx3bdt+wG/ww6Q/9zFLXD3UeD7cUFnK0xcIl992nZrBLGpz4jBQqmyu5Y80dPLPlGRIjEnni9Ce4fO7lul1CM6ZxOuHvf1eupg0blCicf74Kez388FBbN7QMtAd3MnALMAPo6BoipTwxSHaFhLa2AsrK/l4/Q2gAACAASURBVEha2qVERc0CoObNGmperyHv13mE5w7u9eD2PXuo83h44sUXMUVHqy6ZoxyX18WjGx7lvvX30eZt48Yjb+TO4+/U7RKakCMluFyqQD+YT1tb/2m++grq6mDqVHjkERX2Gj+4AR1GLAN97fsb8ApwBiqE9hKgOlhGhYrCwtsQwsrEicsB8LX42HX9LiJmRJB54+D6QHzW2Mif9+1jqc3G7L/8BX75y1E9eqyUkte3v86y1csodBRy5pQzefjkh5mSOCXUpmnGEK2tsHcvlJR0/S4vH1hhPljsdtVzurdPeLgap+myy+CEE0Z22OtQMFCxSJRSPmNMpboOWCeEWBdMw4abxsYNVFf/nZycO7HbVWe7ouVFuEpcHPbhYZisBz9QoM9o1E632bj797+HuDhYunSoTB92tlZsZem7S1lbtJYZyTNYdeEqFucvDrVZmlGG16tGT+0uBIHLtd2mWBNCjbCakQGRkWoItZSUvgv07oX7QNK1f2w2MB38Yz/mGHAPbuO7XAhxOqqxe8x0N5ZSUlCwDKs1haysmwFo/rKZ0t+VknZZGnHHDM6l8uS+fWxubuYVu52Yf/5TTYEaN/rcNFUtVdyx5g6e3vw0CeEJ/Om0P3HF4VfodglND6SEmpr9C8G+feD3dz0uLg6ys9Xw20cdpb7b17OyYMIEVYhrhp+BPuX3CSFigf8H/AGIAW4MmlXDTE3NGzQ0fMTkyU9gsUQj/ZKdV+/EEmch/9eDG+Kx0u3m9sJCFsfH84PbblOupxtuGCLLhweX18VjGx7j3vX30uZtY+mRS7nzuDuJDx+jzllNvzQ3718I9u7t6Qay2zsL/kWLOpcDxSB6TMdajm4GGg31lrHYAJwQPHOGH7/fQ2HhrURETCM9/XIAyp8tp/HjRqatmIY1cXBDYN1cUECb38/jLS2It9+GBx4YNcOPSyl5Y8cbLFu1jAJHAWdMOYPfnvxb3S4xDvD5oLRUjUJTUKC+25dLSlRfgkBMJtUTOTtbDX733e92FYLsbBX4F2q/vsfjobS0FOdQNGiMMsLCwsjMzMRqPbgybaDRUHnAo6jpVf3AJ8CNUsrCgzrrCMLl2gsI8vJ+jclkwV3tpvCWQmKPjyX14tRB5b2uvp6/Vlb+//buPM6mug/g+OdrBmNMsiZMlmEqstbIVo+QtQWlKFmi9Eh5LJE2aXuiqFQoUfb9QdJEMkiyM6FRZiwxkphIE9OYmd/zx+/MuDSZ5d47d5bv+/W6r7n3nHPP+d3juN/7W873x/NVqnDtY49BuXJ5JgX5ruO7GLRiEGsOreGGcjew8qGVtKnextfFUh6UmAiHDv09GMTEwMGDdn2qIkXsPAohIXDrrX8PBBUq2Ok9c7vY2FiuuOIKqlatWqCm1DXGEBcXR2xsLNWqVcvWPjLbDDUHmAB0dl53A+YCjbJ11FykWLEQGjbcg02BBfuH7Sc5PplrJ13r1sWUmJLC4/v2US0ggGePHLFZw8aOhSD3ckp526lzpxjx1Qim7JxCqYBSTOgwgX439dN+iTzq7FkbAFKDgGtgOHz44j6DoCAbEGrXhk6d7PMaNezfSpXyx6y+CQkJBS5QAIgIZcqU4cSJ7A9izew3gBhjZrq8niUieeMnciYUcr4IT609xfHpx6n8bGWK1yzu1j7fiY0l6uxZPqtdm2L33w/ly9s7dXKxE3+e4PaZtxN1IoqBNw9kZPOR2i+RB5w+nX4w2L/fdiK7Kl3aBoCmTaFHjwvBoEYNO6qoIHyHFrRAkcrdz53ZYLFGREYA8wADdAU+F5HSAMaY39wqRS6QkphCdP9oAqoFUOW5Km7t63BCAi8dOkSnsmW5c/duWLPG3rETGOih0nreL/G/0GpGKw6eOsgX3b/QFB25TFycnV4zvSajS4eXVqhgv/zbtLF/UwNC9er594Yx5X2ZDRZdnb+PYYMFgAB9nNchHi5Xjjsy9ghnfzhLnfA6+AW6V98e5MxN8U716jZRfcWK0K+fJ4rpFUfPHKXljJYcPXOU8O7h3Fb1Nl8XqUAzxgaCb76xjw0bbEK6VIUK2X6C6tWhS5eLawchIfb+A5V7iQhDhgxh3LhxAIwdO5b4+HhGjRqV6X2cOXOGmjVr0rlzZ95//30Atm/fTu/evTl37hwdOnRg/PjxHq1FZTZYPA2sMMacEZEXgBuBV4wxOzxWEh86t/8cP73yE+XuK0eZ9mXc2ld4XBxLTp5kdEgIVTZsgPXrbU7iXJpJ7PDvh2k5vSW//vkrKx9aSbPKzXxdpAInKQkiIy8Eh2++gePH7bpSpaBZM+jVC+rWtUGhalU7DFXlTUWLFmXx4sU888wzlM1mbrgXXniB5s2bX7Ssf//+TJ48mcaNG9OhQwdWrFhB+/btPVFkIPPB4nljzAIRuQVoDYwDJpEPOriNMUQ/EY0UFmq8XcOtfZ1LTubJ6GhqBgYyuFIl6NbNznLyyCMeKq1nHTh1gJbTW3I64TSreqyiUXCe/+fME/74AzZtuhAYNm+GP53E/9Wq2eajW26xQaJmTb2L2FsGDbJB2pPq17ctzpfj7+9Pv379ePvtt3nttdeyfIzt27dz/Phx2rVrx7Zt2wA4duwYZ86coUmTJgD07NmTpUuX+iRYJDt/7wA+MMZ8KiKjMnqTiLTDDrn1A6YYY0Zfsr4yMB0o6WwzwhgTLiKFgSnYGow/MMMY83omy5ol56LPcXrdaUJGh1C0kns/10YfPsyBhAQi6tWjyKpVsHGjnWQ3F/4MjI6LpuWMlpw9f5aIXhHcWOFGXxcp3/r5Z9uUlBocIiPtKKRChaBePejT50JwqFTJ16VVOWHAgAHUrVuX4cOHX7R89uzZvPnmm3/bvkaNGixatIiUlBSGDh3KzJkzWb16ddr6o0ePEhx8IalGcHAwR48e9WiZMxssjorIh8DtwBgRKYqd2+IfOdOxTsDWRGKBrSKyzBgT5bLZ88ACY8wkEakFhANVgfuAosaYOiISCESJyFxjzKEsfLZMCbw2kJv33kyRSu7lEIg+e5bRhw/T/aqraFGyJIwcadsLHn7YMwX1oL0n9tJyRkuSU5JZ02sNdcvX9XWR8o2UFNu/4NqkdPCgXRcYCI0bw/PP2+DQuLHesexLGdUAvKlEiRL07NmTd999l2IuTdTdu3ene/fu//i+iRMn0qFDB6655pqLlhtj/ratp0d9ZTZY3A+0A8YaY06LSAVgWAbvuRmISb1xT0TmAR0B12BhsKlDAK7E5pxKXV5cRPyBYkAicCaTZc2ygCoBGW90GcYYnoiOJqBQIcZWrw7Ll8PWrTB1aq5LZLP7+G5azWiFXyE/1vZeS61ytXxdpDztr79g+/aLO6N/c8YGli9vg8LAgbbWUL9+3rhxTeWMQYMGceONN/Kwyw/KjGoWGzduZP369UycOJH4+HgSExMJCgriP//5D7GxsWnbx8bGUrFiRc8W2BjjlQfQBdv0lPq6B/D+JdtUAHZjax6ngJuc5YWxw3RPYKdx7fcPx+gHbAO2Va5c2fjKguPHDWvWmPeOHDEmJcWY+vWNqV7dmMREn5UpPTt+3mHKjCljKo2rZH48+aOvi5Mn/fabMcuXGzNihDG33GJM0aLG2PFLxlx3nTF9+xrzySfGREfbS0HlLlFRUb4ugilevHja82HDhplrrrnGvPjii1nezyeffGIGDBiQ9josLMxs3LjRpKSkmHbt2pnPP//8b+9J7/MD20wmvtO9eVtuenWgS+tKDwDTjDHjRKQJMFNEamNrJclARaAUsF5EvjKXpBcxxkwGJgOEhYX9vR6WA/5ISmJQTAwNgoLoX6mSnZk9MhKmT89VPyO3Ht1Km1ltKFG0BBE9I6he2r0EiQXF0aOwdu2FmsOePXZ54cJ2JrQnn7S1h6ZNbTYXpbJi6NChaUNf3TVp0qS0obPt27f3aOc2ZL4ZKjtiAdeGtWAuNDOl6ott3sIYs1FEAoCywIPYobrngV9FZAMQBuS6XFSjDh3iWGIii2vXxs8YO6nRtdfauRVziW+PfEv72e0pU6wMa3qtoUpJ9246zO+OHIFFi2DhQjtGAWzux2bN7AC3W26Bhg1z9T2WKheLj49Pe16+fHnOnj2brf307t2b3r17p70OCwtjT+qvGS/wZrDYCoSKSDXgKDaf1KXfoIeBVsA0EamJnbL1hLO8pYjMAgKBxoAPu6PStzs+nvGxsTxaoQKNSpSw3y67d8Ps2eCfO3Ipff3T13SY3YGKV1QkolcEwSXyzTQkHvXTTxcCxObNdln9+vDaa3DHHTZfUn7IjaRUdnntG80Yk+Tkj1qJHRb7sTHmexF5GdtGtgw7P8ZHIjIY20TV2xhjRGQC8AmwB9uc9YkxZpe3ypodKc7sd6UKF+a/ISE2p/OoUXZgfNeuGb4/J6w+sJq75t5F1ZJVWd1zNRWuqODrIuUqhw5dCBBbtthlDRrAf/9r74wODfVp8ZTKVbz689cYE44dDuu6bKTL8yjgb7cMG2PiscNnc60Zv/zChjNn+Pi66yhTuDDMnQtRUTB/fq74CboiZgWd53cmtHQoX/X8iquKX+XrIuUKBw5cCBDO/UzcdBOMHm0DRHXtylEqXbmjrSSP+e38eYYdOECzEiXodfXVNl/DqFFQp479xvGxz378jC4Lu3BDuRtY1WMVZQLdS2GS1+3fb4PDwoWww0lQ07AhvPEG3HuvzaeklLo8DRbZ8OyBA5w6f56J9epRSMTWKvbtg8WLfZ6bYfHexXRd1JUGVzdg5UMrC2yK8ejoCzWInTvtskaN7JQi995r75dUSmWeBoss2nLmDJOPHWNQcDB1g4Lg/Hl46SXb2N2pk0/LNm/PPB5a/BCNghsR/mA4VwZc6dPy5LQff7wQIL77zi5r3BjGjbMVvsqVfVs+pfIyTVGWBclOp3aFIkUYlfrTdOZM287x0ks+nTlmxncz6L64O80qN2NF9xUFJlD88AO88orNyHr99TaVRvHi8Pbbdia4jRthyBANFCr3EBGGDh2a9nrs2LFZSk/u5+dH/fr1qV+/PnfffXfa8oMHD9KoUSNCQ0Pp2rUria7z4nqABoss+ODnn9kRH8/bNWpQwt/fTlL8yisQFgZ33umzck3dMZXeS3vTomoLwh8M54qi+TvhUFSUjc21a9vBZy++CFdeaXP9HDliU24MGmTnh1Yqt0lNUX7y5Mlsvb9YsWJERkYSGRnJsmXL0pY//fTTDB48mOjoaEqVKsXUqVM9VWRAm6Ey7Ze//uK5AwdoXaoU96Xeqjttmh1/OXGiz2oVE7dOZED4ANrVaMfi+xdTrHDunDfDHcbA999faGKKirKn+5Zb4N13bR+Ep9PgqPxv0IpBRP7i2Rzl9a+uzzvtLn9LmLspytNjjCEiIoI5c+YA0KtXL0aNGkV/D07lrMEik4YdOMC5lBTeDw212Rz/+gtefdU2irdr55MyvbPpHQavHMzd193Ngi4LKOqf+1KhZ5cxNrVG6iimH36wAeJf/7JzSd1zj50+VKm8KLspygESEhIICwvD39+fESNG0KlTJ+Li4ihZsiT+zs3AvkxRXqCtPXWKWceP80KVKlybmuNh6lTb5jF1qk9qFWO+GcOI1SO4t+a9zLl3DkX8cld22+yKj4c5c2xl7bvv7OCy5s1tDqZ77oGrr/Z1CVV+kVENwJuym6Ic4PDhw1SsWJEDBw7QsmVL6tSpQ4kSJf62na9SlBdYiSkpPB4dTbWAAJ5J7SVNSLB5IG69FW6/PcfL9Mq6Vxi5diTdandjZueZ+BfK+/+Me/fCpEk2/+KZM3ZSoAkTbBNT+fK+Lp1SnpedFOVAWurxkJAQbrvtNnbu3Mm9997L6dOnSUpKwt/f3yspyvP+t4yXvR0by96zZ1lepw7FUu/MnjzZTn82e3aO1iqMMYxcM5JX179Kz3o9+fjuj/Er5Pu7xbPr/HlYtszWIiIi7NQf990Hjz8OTZr4dHCZUl5XunRp7r//fqZOnUqfPn2AjGsWp06dIjAwkKJFi3Ly5Ek2bNjA8OHDERFatGjBokWL6NatG9OnT6djx46eLXBm8pjnhcdNN930tzzt7vrp3DkTuG6d6bR794WFf/5pzNVXG9OihcePdzkpKSlm2JfDDKMwj3z6iElOSc7R43vSzz8b89JLxlSsaOeBqFLFmNdfN+b4cV+XTOV3uW0+i19++cUUK1Ys0/NZbNiwwdSuXdvUrVvX1K5d20yZMiVt3f79+03Dhg1N9erVTZcuXUxCQsLf3p9b57PI8wbFxADwTo0aFxZOmgS//AILFuRYOYwxDF45mPGbx/N42OO81+E9CkneGvVsDKxbZ2sRS5bYDCnt2tkpyjt0yBXptJTKEe6kKG/atCm7d+9Od11ISAhbUjNieoEGi3/weVwcS06eZHRICFUCnGlX4+NhzBho3dr2V+SAFJPCgM8H8MH2DxjceDDj2ozzeMeVN505Y+9bnDjRDnktVQr+8x/497/BNQYrpXI3DRbpOJeczJPR0dQMDGRwsMv8DxMmwIkT9o6wHJCckky/z/rxceTHPN3saV5v9XqeCRS7d9tK2MyZNsbedBN8/LGdPKhY/rsVRKl8T4NFOl4/fJiDCQmsqVePIqmJAc+csWlK27e3va9elpSSxMOfPsysXbMY+a+RjLptVK4PFImJNpfixImwfj0ULQoPPGA7rBs29HXplFLu0GBxiX1nzzLm8GG6X3UVt5Vyydj63nvw2285Uqs4n3yeHkt6MP/7+bza4lWe+9dzXj+mO44csQPEPvoIjh+3Kb/ffBMefhjKFOzs6ErlGxosXBhjeCI6moBChRjrOgvO77/b3NZ33eX1n8iJyYl0W9SNJT8s4c3Wb/JU06e8erzsSkmxw10nToRPP7Ud2HfcYWsRbdv6PFO7UsrDNFi4WHTiBKtOneK9GjW4uqhL6ox33oHTp71eq0hISuC+hfexfN9yxrcbz8BGA716vOw4fdqmxJo0yU7hUbYsDBtmO6x1jgil8i/9/ef4IymJQTExNAgKon+lShdWnDoFb71lc000aOC14587f45O8zqxfN9yPrjjg1wXKHbuhEcftQn7Bg+2zUszZ9omqNGjNVAolVnupig/fPgwbdq0oWbNmtSqVYtDhw4BmqI8x4w6dIhjiYlMuvZa/Fw7kseNs53bWfjHzKqEpAQ6ze/El/u/ZOrdU3ks7DGvHSsrEhJg1izbn3/jjfaG9e7dYft2+PZbeOghSB1VrJTKHHdTlPfs2ZNhw4axd+9etmzZwlVXXQVoivIcsSs+nvGxsfSrUIFGrgm5Tp6E8ePh/vvt/Npe8FfSX9y74N60QNGnQR+vHCcrDh2CDz+EKVPsKQgNtZMJ9epl75NQKl8YNAgiPZuinPr1bbP1ZbiTojwqKoqkpCRat24NQFBQEKApynNEijP7XanChflvSMjFK8eOhT//tLPreEFiciL3L7qf8OhwPrzzQ58HisREGDHCXusicPfdMGAAtGypHdZKeVJ2U5Tv27ePkiVLcs8993Dw4EFuv/12Ro8ezalTpzRFubfFnDvH3rNnGVe9OqULF76w4tdf7XDZBx6AWrU8ftzzyefptqgby35cxoQOE+h3Uz+PHyMr9u+3N8xt22Y7q599VmeaU/lcBjUAb8puivKkpCTWr1/Pzp07qVy5Ml27dmXatGkXTa+aSlOUe9i1gYFEN2pEKf9LTsUbb9hG+5EjPX7MpJQkui/uzpIfljC+3Xgeb/i4x4+RFQsW2M7rQoXsTXWdO/u0OEoVCNlJUR4cHEyDBg0IcVpBOnXqxKZNm+jTp4/XU5Rr4wJQpnBhCrlG4WPHbGqPhx6C667z6LGSU5LpuaQnC6MWMq7NOJ+Oejp3ztYiuna1lafISA0USuUU1xTlqbp37542v7brI3Uui4YNG3Lq1ClOnDgBQEREBLVq1booRTnglRTlGizSM2aMnWzBw7WK5JRkHv70YebumcvoVqMZ0mSIR/efFT/8AI0a2Y7s4cPh66+hShWfFUepAmno0KFZGhXl5+fH2LFjadWqFXXq1MEYw6OPPgrAmDFjeOutt6hRowZxcXH07dvXo2Ut8M1Qf3P0qM2b3bs3uN7F7aYUk8Kjnz3KzF0zeaXFKzx9y9Me23dWTZ9u77QODIQvvvDZFOJKFUjupCgHaN26Nbt27frbcm+nKNeaxaVefx2Sk+H55z22yxSTwr+X/5tPIj/hxeYv8vy/PLfvrIiPt8Nfe/e2WUu++04DhVIqc7waLESknYj8KCIxIjIinfWVRWSNiOwUkV0i0sFlXV0R2Sgi34vIbhHx/u1fhw/bbHh9+3rslmRjDE+EP8FHOz7i2Vue5cXm3hmGm5FduyAszN51/eKLsHq1vRtbKaUyw2vNUCLiB0wAWgOxwFYRWWaMiXLZ7HlggTFmkojUAsKBqiLiD8wCehhjvhORMsB5b5U1TeoNMs8+65HdGWMYtGIQk7ZNYljTYbza8tUcTzNujO2XGDQISpe2QaJFixwtglIqH/BmzeJmIMYYc8AYkwjMAy7tnjdA6i3TVwI/O8/bALuMMd8BGGPijDHJXiwrHDxoZ+d59FGoXNnt3RljeOrLp3h3y7sMbjyYMbePyfFA8fvvdqRT//5w2212tJMGCqVUdngzWFQCjri8jnWWuRoFPCQisdhaxZPO8msBIyIrRWSHiAwnHSLST0S2ici21KFk2fbqq3Yi6GeecW8/2EDxzOpneGvTWzx585M+mQp161abz2nxYju4KzwcnBQySimVZd4MFul9O5pLXj8ATDPGBAMdgJkiUgjbPHYL0N3521lEWv1tZ8ZMNsaEGWPCypUrl/2SxsTYIUL//jdUujSeZY0xhhfWvMCYDWPoH9af8e3G52igMMbmcWrWDJKS7JDY4cM1XYdSyj3e/AqJBVwTRgRzoZkpVV9gAYAxZiMQAJR13rvOGHPSGHMWW+u40WslfeUVKFLEJkZy08vrXua19a/xSINHeL/D+zkaKOLioGNHGDIEOnSwacWbNs2xwyulMsGdFOVr1qyhfv36aY+AgACWLl0K5O0U5VuBUBGpJiJFgG7Asku2OQy0AhCRmthgcQJYCdQVkUCns7s5EIU3xMTYPNwDBsDVV7u1q/+u/y+j1o2id/3efHjXhxSSnPs5/803NuHlypXw7ruwZInt0FZK5S7upChv0aJF2l3dERERBAYG0qZNGyAPpyg3xiSJyBPYL34/4GNjzPci8jKwzRizDBgKfCQig7FNVL2NMQY4JSJvYQOOAcKNMZ97paAhITBvHjRv7tZu3tjwBs9FPMdDdR9iyl1TcixQpKTYPokXXrCjfb/9Fm66KUcOrVSeNig6mkiXG+Q8oX5QEO+Ehl52G3dSlLtatGgR7du3JzAwMO+nKDfGhGObkFyXjXR5HgU0+4f3zsIOn/WuQoXgvvvc2sXbG9/m6a+eplvtbkzrOA2/Qn4eKtzlHT8OPXrAqlU2Y+yHH4LrdBxKqdwpuynKXc2bN48hQ2zKoLi4OE1Rntu9t/k9hnw5hC61ujCz88wcCxSrV9s8h6dPX7iPMIcHXCmVp2VUA/Cm7KYoT3Xs2DF2795N27ZtATuw5lKaojwXmbR1EgNXDKTz9Z2Zc88c/At5/3QmJcHLL9uRvtdfD19+6bVJ/JRSXpSdFOWpFixYQOfOnSnszMFTtmxZr6co12CRTR9t/4jHwx/nrmvvYl6XeRT2K5zxm9wUGwsPPgjr18PDD9u5mYoX9/phlVJe4JqivE8fO0tmZmsWc+fO5fXXX0977ZqivFu3bpqiPLf4ZOcnPLb8MTqEdmDhfQsp4lfE68f8/HM72mnHDpvf6eOPNVAolddlNUU5wKFDhzhy5AjNLxmUoynKc5mZ382k77K+tK7emv/d/z+K+hf16vESE+G55+x04PXqwfz5Hp+PSSmVg9xNUV61atV0O6+9naJcg0UWzN09l96f9qZFtRYs7bqUAH/vJsI9eNCOctqyxc4/MW4cBHg/965SSv2NBotMWvj9Qnos6cGtlW9lWbdlFCtcLOM3ueF//7MjnIyBhQuhSxevHk4ppS5L+ywyYcneJTzwvwdock0Tlj+4nOJFvNdZkJAATzxhg8N119lMsRoolFK+psEiA5/9+BldF3WlYaWGhD8YTlCRIK8da98+aNIEJkyAoUPtqKdq1bx2OKWUyjRthrqM8OhwuizsQv2r67Oi+wquKHqFV45jDMyYYWsURYvC8uVwxx1eOZRSSmWL1iz+wZf7v+Se+fdQ+6rafNnjS64MuNIrxzl1ynZi9+5tczpFRmqgUErlPhos0rH6wGo6zuvI9WWvZ1WPVZQMKOmV46xdC3Xr2gmKXn/dpvAIDvbKoZRSuYQ7KcoBhg8fzg033EDNmjUZOHBgWqqP7du3U6dOHWrUqHHRck/RYHGJtYfWctfcuwgtHcpXPb+idDHP5/lOTLQT8rVsCcWKwcaNdioNv5xJK6WU8iF3UpR/++23bNiwgV27drFnzx62bt3KunXrAOjfvz+TJ08mOjqa6OhoVqxY4dFya5+Fi28Of8Odc+6kWqlqfNXzK8oGlvX4Mfbtg+7dYds2eOQRO6tdkPf6zJVS/yB6UDTxkZ5NUR5UP4jQd7yXolxESEhIIDExEWMM58+fp3z58hw7dowzZ87QpEkTAHr27MnSpUtp3759tj/LpbRm4dh4ZCPtZ7cnuEQwq3uu5qrinp2w2hiYMgUaNIADB+x9FB99pIFCqYJowIABzJ49m99///2i5bNnz75oJrzURxdn/HyTJk1o0aIFFSpUoEKFCrRt25aaNWty9OhRgl3asDVFuZdsObqFtrPaUiGoAhG9Irg6yL0Z8y4VFwePPmpnr2vVyk737eZU30opN2VUA/Cm7KYoj4mJYe/evcTGxgLQunVrvv7664v2kcrTKcoLfM0iOi6aNjPbUK54OSJ6GLTkRgAAC7dJREFURVDxCs+m9f3qK9uJvXy5ze/05ZcaKJRSNkX51KlT+fPPP9OWZVSzWLJkCY0bNyYoKIigoCDat2/Ppk2bCA4OTgsggFdSlBf4YBFSKoR+N/UjomcEwSU8NxTpr7/gqaegdWs7e93mzfZGu0IF/owrpeDiFOWpunfvnjbHtusjdS6LypUrs27dOpKSkjh//jzr1q2jZs2aVKhQgSuuuIJNmzZhjGHGjBmaotzT/Ar58UbrN6hSsorH9rl3LzRubBP/9e8P27fbvgqllHKV1RTlXbp0oXr16tSpU4d69epRr1497rrrLgAmTZrEI488Qo0aNahevbpHO7dB+yw8yhj44AMYMsR2XC9bBs6/o1JKAe6lKPfz8+PDDz9Md11YWBh79uxxu3z/RIOFh/z6q80Su3w5tG0L06bB1Z7tJ1dKKZ8p8M1QnrBihe3EXrUKxo+H8HANFEqp/EWDhRsSEmDQIGjfHsqVg61bYeBA7cRWSuU/+rWWTbt3Q8OGtiYxcKCdza5OHV+XSimlvEODRRYZA+++awPFiRO2yWn8eJvjSSml8ivt4M6CX36Bhx+2fRR33glTp8JVns0KopRSuZLWLDJp+XLbib12LUycaIfFaqBQSmWVuynKn376aWrXrk3t2rWZP39+2vKDBw/SqFEjQkND6dq1K4mJiZ4stgaLjJw9CwMG2PslKla0N9j17w8eTruilCog3ElR/vnnn7Njxw4iIyPZvHkzb775JmfOnAFsEBk8eDDR0dGUKlXqojvDPUGboS4jMhIefNDekT10KLz2mp32VCmV90VHDyI+PtKj+wwKqk9o6DuX3cadFOVRUVE0b94cf39//P39qVevHitWrOC+++4jIiKCOXPmANCrVy9GjRpF//79s/1ZLuXVmoWItBORH0UkRkRGpLO+soisEZGdIrJLRDqksz5eRJ7yZjkvlZJiU3XcfDOcPm2T/40dq4FCKeUZ2U1RXq9ePb744gvOnj3LyZMnWbNmDUeOHCEuLo6SJUvi729//+epFOUi4gdMAFoDscBWEVlmjIly2ex5YIExZpKI1ALCgaou698GvvBWGdPz88/Qq5fNFtupk51zoqzn50BSSvlYRjUAb8puivI2bdqwdetWmjZtSrly5WjSpAn+/v7pTqGal1KU3wzEGGMOGGMSgXnApWkQDVDCeX4l8HPqChHpBBwAvvdiGS+yZIm9V+Lbb2HyZDs3tgYKpZQ3ZCdFOcBzzz1HZGQkq1atwhhDaGgoZcuW5fTp0yQlJQF5L0V5JeCIy+tYZ5mrUcBDIhKLrVU8CSAixYGngZcudwAR6Sci20Rk24kTJ7Jd0D//hH794J57oFo12LHDTlakndhKKW/JTory5ORk4uLiANi1axe7du2iTZs2iAgtWrRI22769Ol5KkV5el+1l9aVHgCmGWOCgQ7ATBEphA0SbxtjLjtBrjFmsjEmzBgTVq5cuWwV8uBBuPFGO+XpiBG2VnHdddnalVJKZUlWU5SfP3+eW2+9lVq1atGvXz9mzZqV1k8xZswY3nrrLWrUqEFcXBx9+/b1aFm9ORoqFrjG5XUwLs1Mjr5AOwBjzEYRCQDKAo2ALiLyBlASSBGRBGPM+54uZMWKcO21NrV4ixae3rtSSl3MnRTlAQEBREVFpbsuJCSELVu2uF2+f+LNYLEVCBWRasBRoBvw4CXbHAZaAdNEpCYQAJwwxtyauoGIjALivREowI5w+uwzb+xZKaXyD681QxljkoAngJXAXuyop+9F5GURudvZbCjwqIh8B8wFepv0uvWVUkr5lFdvyjPGhGM7rl2XjXR5HgU0y2Afo7xSOKVUgWSM8fiw0rzA3d/hmu5DKVVgBAQEEBcX5/YXZ15jjCEuLo6AgIBs70PTfSilCozg4GBiY2NxZ6h9XhUQEEBwcHC236/BQilVYBQuXJhq1ar5uhh5kjZDKaWUypAGC6WUUhnSYKGUUipDkl9GBYjICeAnN3ZRFsj6bCT5k56Li+n5uJiejwvyw7moYozJMF9SvgkW7hKRbcaYMF+XIzfQc3ExPR8X0/NxQUE6F9oMpZRSKkMaLJRSSmVIg8UFk31dgFxEz8XF9HxcTM/HBQXmXGifhVJKqQxpzUIppVSGNFgopZTKUIEPFiLSTkR+FJEYERnh6/J4g4hcIyJrRGSviHwvIv9xlpcWkVUiEu38LeUsFxF51zknu0TkRpd99XK2jxaRXr76TJ4gIn4islNEljuvq4nIZuezzReRIs7yos7rGGd9VZd9POMs/1FE2vrmk7hPREqKyCIR+cG5TpoU1OtDRAY7/0/2iMhcEQkoyNdGGmNMgX0AfsB+IAQoAnwH1PJ1ubzwOSsANzrPrwD2AbWAN4ARzvIRwBjneQfgC+w86o2Bzc7y0sAB528p53kpX38+N87LEGAOsNx5vQDo5jz/AOjvPH8c+MB53g2Y7zyv5VwzRYFqzrXk5+vPlc1zMR14xHleBDudcYG7PoBKwEGgmMs10bsgXxupj4Jes7gZiDHGHDDGJALzgI4+LpPHGWOOGWN2OM//wM5cWAn7Wac7m00HOjnPOwIzjLUJKCkiFYC2wCpjzG/GmFPAKpw51PMaEQkG7gCmOK8FaAkscja59HyknqdFQCtn+47APGPMX8aYg0AM9prKU0SkBPAvYCqAMSbRGHOagnt9+APFRMQfCASOUUCvDVcFPVhUAo64vI51luVbTjW5AbAZKG+MOQY2oABXOZv903nJT+frHWA4kOK8LgOcNnY6YLj4s6V9bmf97872+eV8hAAngE+cZrkpIlKcAnh9GGOOAmOBw9gg8TuwnYJ7baQp6MEivbkV8+1YYhEJAv4HDDLGnLncpuksM5dZnqeIyJ3Ar8aY7a6L09nUZLAuX5wP7C/pG4FJxpgGwJ/YZqd/km/Ph9Mv0xHbdFQRKA60T2fTgnJtpCnowSIWuMbldTDws4/K4lUiUhgbKGYbYxY7i487zQc4f391lv/Teckv56sZcLeIHMI2PbbE1jRKOk0PcPFnS/vczvorgd/IP+cjFog1xmx2Xi/CBo+CeH3cDhw0xpwwxpwHFgNNKbjXRpqCHiy2AqHOSIci2A6qZT4uk8c5bahTgb3GmLdcVi0DUkes9AI+dVne0xn10hj43WmGWAm0EZFSzi+wNs6yPMUY84wxJtgYUxX7bx5hjOkOrAG6OJtdej5Sz1MXZ3vjLO/mjIipBoQCW3LoY3iMMeYX4IiIXOcsagVEUTCvj8NAYxEJdP7fpJ6LAnltXMTXPey+fmBHduzDjlZ4ztfl8dJnvAVbBd4FRDqPDti21dVAtPO3tLO9ABOcc7IbCHPZVx9sZ10M8LCvP5sHzs1tXBgNFYL9Dx0DLASKOssDnNcxzvoQl/c/55ynH4H2vv48bpyH+sA25xpZih3NVCCvD+Al4AdgDzATO6KpwF4bqQ9N96GUUipDBb0ZSimlVCZosFBKKZUhDRZKKaUypMFCKaVUhjRYKKWUypAGC6XcICJVRWRPFrbvLSIVvVkmpbxBg4VSOas3No2EUnmKBgul3OcvItOduR0WOXf/3iQi60Rku4isFJEKItIFCANmi0ikiBQTkZEistWZO2Gyc9ewUrmO3pSnlBucLL4HgVuMMRtE5GNsCvjOQEdjzAkR6Qq0Ncb0EZG1wFPGmG3O+0sbY35zns8EFhhjPvPBR1Hqsvwz3kQplYEjxpgNzvNZwLNAbWCVU1Hww6a7Tk8LERmOnTehNPA9oMFC5ToaLJRy36XV8z+A740xTS73JhEJACZicysdEZFR2FxDSuU62mehlPsqi0hqYHgA2ASUS10mIoVF5AZn/R/YqW3hQmA46cw1kprVVKlcR4OFUu7bC/QSkV3YpqT3sF/8Y0TkO2yW36bOttOAD0QkEvgL+AibuXUpNmW+UrmSdnArpZTKkNYslFJKZUiDhVJKqQxpsFBKKZUhDRZKKaUypMFCKaVUhjRYKKWUypAGC6WUUhn6P7dzpja0fyGgAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "for n,(rank,df) in enumerate(data_by_rank):\n",
+    "    df_sorted=df.sort_values(by=\"beta\",axis=0)\n",
+    "    beta=df_sorted.index.get_level_values(\"beta\")\n",
+    "    sparsity=df_sorted[\"post_sparsity\"]\n",
+    "    plt.plot(beta,sparsity,label=\"N={:}\".format(rank),color=colorsequence[n])\n",
+    "plt.legend()\n",
+    "plt.xlabel(\"beta\")\n",
+    "plt.ylabel(\"sparsity\")\n",
+    "plt.title(\"sparsity as a function of penalty\",fontsize=\"xx-large\")\n",
+    "plt.show()\n",
+    "plt.close()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 56,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXd8VFXax79nZlJJgySEUCNVUBQwFlAXsa2giG2FFxura+F13UWxrG1ftujq2l1dFRdFEXvBrmvvqKEoKCogIJCENNInmczMef84kzAZJskkmZbJ8/187mdmzj333ufO3Hl+9zznnOcqrTWCIAhC78USaQMEQRCEyCJCIAiC0MsRIRAEQejliBAIgiD0ckQIBEEQejkiBIIgCL0cEQKhR6GUmq6UWqOUsiultFIqL9I2tYVSKs9j47xI2xIIPem77Q6ec1sUaTuiCVukDRCEQFFKZQLPApuBy4AGoDSiRgFKqSuACq310kjb0lWi9bsNB0qp4cC5wAqt9dpI2xMJRAiEnsTBQArwd63185E2xosrgE3AUp/ybUAS0BRug7pAtH63oSAJcHp9Hg78H7AV6JVCIKGhKEApldyVdcE6Rg+iv+e1MqJWBIg2NGitXZG2JQB61HfrjVLKqpSKD7S+5zdxdlyzF6G1liUIC9AHuBnTtG4ECoF/A3196n0I7ADGAG8A1cCHnnWLAA1MAh4ESsxP1LJtBnCvZ/tGz7H+CiT4HGOpZz9DgKeB3cCWDuw/D3jbY7cD+MVzrFSfelbgWuAHoB6oAFYBlwbwHZ0MrAC2e+wv9tg6IIBtt3rOyXv50Ot8t/rZ5ihPvaO8ypq/4/HAXZ7vuB54ExjmZx9ZwD3AFo/NRcBLwH6e9b426WZbgDzP53k++xzksXmXZ5/fA5cDqo1rZajne6vxfN8P+v7m7XxvHV4z7X237ez3dGAlRjhqgR+BB33qaOAJ4ERgDWAHfgb+2I3rr/k3vRC40nM+zubfuBN2LfK8n9fGb7gIuMTzfko719bFkfY9wVgkNBQElFIJwHvAfsBizMU3GrgUOEwpNVlr3ei1STLwLubCvxLwvWN8HONw/gr09TnGRGAJ5o/1K+BGT9lMP6a9CWwArgMSOjiNP2DCG/dghGMScDHGYU7zqvdnz7IUuBNIBMYBRwL3d3CM8zHhyGaR2xfzhz5UKTXB5zvyZQEwHbgIuAX4DuNIu8ojmPP8K5CLCe88gTkPAJRS2cCXGEe8FCN4GZjv4yCPDedgHNYu4CbPprVtHdQTi/8cGID5vn4GTsJ8lyOA3/tskoT53T8CrgImY36XUsxv3yaduGY69d0qpY4BngM+Bm7AhL6G4/8anOApfxB4FPgNcLdSKlFrfatXvUCvv2b+iLmWFmOEvKiTdjXzseec/+TZ1yee8m8xob07MSL1uc9252L6UZ5pZ989h0grUSwswNWYu5hJPuUnY+4afudV9qGn7E9+9rPIs+4N9r47/F/PuoU+5Xd5yk/yKlvqKXuwE+fQx0/ZeZ79HOZVtgZ4vYvfk79jTPUcY04A28/z1D3Wp3wpnW8RvORT9wpP+Tivsv94yk70s2/l9X4Hfu6g8dMiAP7pKTvde1/Ai57y8X6ulQU++30FKAng++rMNeP3u21jv3cBVYCtg3rNd9fTvcriMHfs9UC/Llx/zb/pLiC9G3Yt8vp8rO/v5LVuOaZ1kehVloRpyT/Vlf9BNC7SRxAc5gAFwC9KqazmBfgC0xw+xs82D7Szvwe154rz4mSgjr3vuv/ptd6Xf3douQetdR2AUsqilEr32P+xZ/XBXlWrgP2UUmMD3befYyilVJrnGN9h/mgHt7tx8PH9/j/wvI4A8z0AZwCfaq1f993Yz+8TKCcDm7TWL/js6zbPR9+7VzfwkB9bs5VSqQEcq7PXTCBUYUKhJwRQ90et9ZvNH7TWTZgWVBLGATeXB3r9NbNca13VDbsC5REgHZjlVXYakMregwN6LCIEwWFfTJO91GcpwVzw/X3qV/i5iL3Z4qcsDxPnb/Au1FoXYRzpPgHuxy9KqUOUUu9gHEclxv6fPav7elW9EfMn+F4p9b1S6j6llL+mu79jjFZKvYi5m6piz/eU4XOMcLDN5/Nuz2s/z2s2xgF8G+Tj5mH6V3z53vPq+zuWaK3tPmW+trZ3rM5eM4Hwb8w5vKqUKlRKPamUmquUivNT9yc/ZT96XluO34nrrxl/13Zn7AqU9zF9KOd5lZ0L7ATe6cZ+owrpIwgOFszd/5/bWL/b57PvH9uXtta3dReq2ljX0XHMxmbi0AeYC/5qz6sd0zH8Fl43DFrrTzzjrk/E3NGdClyqlHpEa31BO8dIxcS5m4C/ABsx4QGN6dDuzk1JW9+LtZ1t2hrJowLcd3dob5++69obceRra2eO1dY10/EOtS5RSk0EjgZ+DRwP/A9wtVLqCK21dx9Jh8fozPXnxV7XdiftCgittVZKPQbcoJTKxXxvxwC3aa3dnd1ftCJCEBw2ARla63dDeIytwOGeTraWOzyl1ADMnevWbux7FqYD+0Stdct+lFJj/FX2tGaeBJ5UStmAx4DzlVK3aq393QGC+XMOAKZprT/0OkYS3W8N7G5jH8O7sc9STKvlgADqdsahbgX8hdXGeq0PFlsJ0TXjCfG87VlQSv0vJgQ1F9Pp2oy/a6i5rPmuvlPXX5DsarVZB7tdirnJOwsjSlZiKCwEEhoKFk8BY5VSc31XeMY4d9SED4RXMRN+5vuUX+W1vqs033X6Xg9/8q3oGfXSgjbjsdd5PrZ3nm0d42o/ZZ1lI5CmlDrIy854TGdpl/Dc7T0PHKmUmu67XinlfTdeS+Bi9iowUil1qs++rvRaHyxCcs34XgMeVntefa+BMd7fnydM8wfMiJvmG6eAr78g2uVNc0vB72/oEacPMOGhc4CVWusf/dXtqUiLIDjcAcwAnlBKnYQJEwGMxIxrvoHu30H8BzP88g6l1L6YGZBHYpq+r3mWrvIW5o/5hlLqIcwfcybg74+1QSn1KfA1ZuTGGMyQxx8xwyvb4jPMXfYypdS/MP0ER2M6Asu7YTsYIf4HsEIpdben7Gy6P6P3Okz46xWl1KMYp5KKsfspzDBfMN/F2Uqp/8PExGu11m052VuAM4GnlFLNw0dPxAzfvF9rva6N7bpCqK6Z/yil+mOGpv6CmWtxCSZc86JP3e+Bp5VSD2Di6mcChwLXa60rPHU6c/0Fyy5vvsOEKecrpWox8zXWa63Xe9V5FFjmeX9JJ+2KfiI9bClWFsx4+uuB9ZiLuhL4BjNCY6hXvQ+BHW3sYxGmmTqyjfUZwL8wfygHxon8jbYnlLU7jM5nm2MwY+brMA57KabD1Heo3bWYMdVlnvPcjBkFkhPAMSZhOt+qMeGcFzEdhluBpQFsP482hjhixscXYCZN7cA05Y+h7eGjI322z8P/5K8cTCfkds93Xgi8QOthpoOA1z3npQlsQtljnu+5ETPX4wramFDWzveQF8B3Fug10+Z362efp2OGOBexZ/LkC8BEn3qa1hPKGjDhoCu6cf0dhc+Q7C7atcjPtus935G/9UmY/7QdEwaOuM8J5qI8JykIghBUlFIaM8zz7Ejb0l08k/OKgLe11v8TaXuCjfQRCIIgdMxvMH0Ij0TakFAgfQSCIAhtoJQ6GtMP9mdMeCuUIwMjhgiBIAhC2/wZOBwzEOJ8HaOxdOkjEARB6OX0iBZBVlaWzsvLi7QZgiAIPYpVq1aVaa2zO6rXI4QgLy+PgoKCSJshCILQo1BK+ebU8ouMGhIEQejliBAIgiD0ckQIBEEQejkiBIIgCL0cEQJBEIRejgiBIAhCL0eEQBAEoZcjQiAIIaa8HJ55Bm66KdKWCIJ/esSEMkHoSbhcUFAAb71llq++Arcb+veHK6+EhIRIWygIrREhEIQgUFwMb79tHP9//wsVFaAUHHoo/PnPcMIJkJ8PVmukLRWEvREhEIQu0NQEn3++565/7VpTPmAAnHyycfzHHguZnX3YoiBEABECQQiQbdv2OP733oOaGrDZ4PDD4R//gOnT4YADTEtAEHoSIgSC0AZ2O3z88R7n/8MPpnzYMJg719z1H300pKVF1k5B6C4iBILgwzPPwNKl8OGH0NBgOnePOgouvtg4/zFj5K5fiC1ECATBi23bYM4c2GefPY7/V7+C5ORIWyYIoUOEQBC8eO018/rWWzB6dGRtEYRwIRPKBMGLV1+FUaNEBITehQiBIHiorYUPPoCZMyNtiSCEFxECQfDwzjvgcMBJJ0XaEkEILyIEggBs3gw33wzp6XDEEZG2RhDCiwiB0KtxueDOO2H8ePjpJ3joIYiLi7RVghBeZNSQ0Gv57ju44AL48ksTDnrgARg8ONJWCUL4kRaB0OtoaoK//x0mTYJNm+DJJ+GVV0QEhN6LtAiEXkN1NTzyCNxzD2zdCrNnw733mvTQgtCbESEQYp6tW+Ff/4KHHzaJ4o48Eu6/H2bMiLRlghAdiBAIMcsXX8Bdd8ELL4DFAmeeCZdfbp4LIAjCHkQIhJigrg6++QZWr4Y1a0wH8HffQUaGeSrY738PQ4ZE2kpBiE5CJgRKqSHA48AAwA0s1lrfo5R6BhjjqZYBVGqtJ4TKDiH22L3bPAhm9eo9jv+HH0Brsz4ry3QEX3IJzJsHKSkRNVcQop5QtgicwEKt9WqlVCqwSin1jtZ6dnMFpdQdQFUIbRB6IC4XlJZCUdGeZedO+PZb4/i3bNlTd/Bg4/Rnz4aJE837QYMkTbQgdIaQCYHWuggo8ryvUUptAAYB3wMopRRwJnB0qGwQooumJti1CwoLWzt532XXLiMGvowYYeL7F11knP7EiTLiRxCCQVj6CJRSecBE4Euv4iOBXVrrjeGwQQgOjY1QVWWWysrAXisqzMPdy8r2hG+aUco489xcsxx44J73zcvAgeZZwAkJkTlnQYh1Qi4ESqkU4AVggda62mvV/wBPtbPdRcBFAEOHDg2pjeFAaxPXfvVVE+JQyv9isUS2vK7OvzNvft/Q0P55KmXy9WRk7HkdPhymTNnbuefmGhGwyZAFQYgoIf0LKqXiMCKwXGv9ole5DTgNOKitbbXWi4HFAPn5+bqtetGM3Q7vv2+c/2uvmTi3Uibfvc1mxMHtNq++SyjL26oLkJjY2on37Qt5ea3L2ntNSTGiIghCzyGUo4YUsATYoLW+02f1scAPWusdoTp+pCgshNdfN87/3XeNGKSkwPHHmzz3M2ZEb1xba+lkFYTeSChbBIcD5wDrlFJrPWXXaa3fAObQTlioJ6G1Gcny2mvG+a9aZcqHDTMJzWbOhKlTe0Z8W0RAEHonoRw19Cng17VoreeF6rjhoL4e3nvPOP/XXjOtAKVg8mST037mTNhvP3GsgiD0DKSbLkB27tzj+N9913SapqbCr39tUhjPmAHZ2ZG2UhAEofOIELSB221CPs0dvatXm/K8PLjwwj0hn/j4iJopCILQbUQIvKivN3f7r75qOnyLiswImMmT4R//MM5/3DgJ+QiCEFv0eiHYsWNPyOe99/aEfE44YU/IJysr0lYKgiCEjl4nBG63Gdnz6qtmWesZzzR8OFx8sbnrP/JICfkIgtB76BVCUFfXOuRTXGxCPlOmwK23mjv/sWMl5CMIQu8kpoXghRdgyRIzu7exEdLSTMhn5kzzKiEfQRCEGBeC1avhp59g/nzj/I84QkI+giAIvijtmw4yCsnPz9cFBQWd3s7hgLg4CfkIQmd44tsnGJM5hoMHHRxpU4RuopRapbXu8OGsMZ0eLD5eREAQOsPa4rVc8MoF3PzpzZE2RQgjMS0EgtCb2Vm9k5rGmoDr1zpqmf38bLKSs3h45sMhtEyINkQIBCEGqWqo4oAHD+Cad68JeJtL37iUTRWbePK0J8lKlpEUvQkRAkGIQe7/+n4q7BV8+sunAdV//JvHefybx7nxVzcyNW9qiK0Tog0RAkGIMeocddy18i4sysJ3pd9R31Tfbv0fy37kf1//X3417Ffc8KsbwmSlEE2IEAhCjLF41WLK6su4esrVuLWbNUVr2qzb4GxgzgtzSLQlsvy05dgsMT2iXGgDEQJBiCEanA3c9vltTMubxh8O/QMAXxd+3Wb9q9+5mrXFa1l6ylIGpw0Ol5lClCHyLwgxxKNrHqWotognTnuC3NRcBqUOoqDQ/xycFT+s4F9f/YsFhy7gpNEnhdlSIZqQFoEgxAhNriZu/exWJg+ezLS8aQDkD8z32yL4peoXzn/5fA7KPYhbjr0l3KYKUYYIgSDECMvXLWdb1TauP/J6lGcm5cEDD+an8p+obKhsqed0O5n7wlya3E08fcbTJNh6wAO1hZAiQiAIMYDL7eLmT25mwoAJzBg1o6W8OU3E6qLVLWWLPlzEZ9s/46GTHmJkv5Fht1WIPkQIBCEGeO7759hYsZEbjryhpTUAcFDuQQB8vdOEh977+T1u/uRmzp9wPnPHz42IrUL0IUIgCD0ct3Zz0yc3MTZrLKeOPbXVuszkTIb3Hc7XhV9TUlfC2S+dzZisMdw7/d4IWStEIzJqSBB6OK/++CrrS9az7NRlWNTe93YHDzyYz7d/zrkvnctu+27ePvtt+sT3iYClQrQiLQJB6MForfn7J39neN/hzNl/jt86+QPz2V69nbc3v83dJ9zNATkHhNlKIdqRFoEg9GD+u/m/FBQW8PDMh9ucFXzIoEMAOH3s6Vx80MXhNE/oIYgQCEIPRWvN3z7+G4PTBnPugee2We+IoUfw6KxHOW3saa06kgWhmZCFhpRSQ5RSHyilNiilvlNK/dFr3WVKqR895f8MlQ2CEMt8vO1jPtv+GVdPuZp4a9vPYLUoC/MmzCMtIS2M1gk9iVC2CJzAQq31aqVUKrBKKfUOkAPMAg7QWjcqpfqH0AZBiFlu+uQm+vfpz+8m/S7Spgg9nJAJgda6CCjyvK9RSm0ABgEXArdorRs960pCZYMgxCpvbHyDd35+h38e+0+S4pIibY7QwwnLqCGlVB4wEfgSGA0cqZT6Uin1kVLK7xOylVIXKaUKlFIFpaWl4TBTEHoEj6x5hFlPz2L//vsz/+D5kTZHiAFCLgRKqRTgBWCB1roa0wrpCxwGXAU8q/z0YGmtF2ut87XW+dnZ2aE2UxCiHrd2c91713HBKxcwLW8an/72U1LiUyJtlhADhHTUkFIqDiMCy7XWL3qKdwAvaq018JVSyg1kAXLbLwhtYG+yM+/leTz73bNcNOki7ptxH3HWuEib1XNwu8Ei06baIpSjhhSwBNigtb7Ta9UK4GhPndFAPFAWKjsEoadTUlfC0Y8fzbPfPcttx93Ggyc9KCIQKFrDM8/AvvvCjz9G2pqoJZQtgsOBc4B1Sqm1nrLrgEeAR5RS6wEHcJ6ndSAIgg8bSjdw4pMnUlRbxPO/eZ7Tx50eaZN6Dl9+CZdfDl98AQccAHV1kbYoagnlqKFPgbZmr5wdquMKQixQ2VDJs989yzXvXkO8NZ4Pz/uQQwcfGmmzega//ALXXgtPPgk5OfCf/8C8eWC1RtqyqEVmFgtClOBwOXhr01ss+3YZr/74Ko2uRiYOmMiLs18kLyMv0uZFP7W1cMstcMcdJiR03XXwpz9BamqkLYt6RAgEIYJorfly55cs+2YZz3z3DOX2crKSs7hw0oWcc+A5HDzwYEkL0REuFyxdCjfcAMXFMHcu3HwzDBsWact6DCIEghABNlVsYvm3y3li3RNsqthEoi2RWWNmcfYBZ/PrEb+WzuBAef99uOIK+OYbmDwZXnoJDjss0lb1OEQIBCGMVDVUMf/1+Ty1/ikUimn7TOO6I67j9HGnSy6gzmC3mzv/FSvMnf/TT8OZZ4K0nrqECIEghImCwgJmPz+bbZXmAfMXH3QxQ9KHRNqsnskrrxgRuPFG0zGcJGk2uoMIgQCYWHVhTSGrilaxqnAVq4pWsa5kHRZlIS0hjdT4VFITUkmNT2312e86n/dJtqReHefWWnP3yru55t1rGJAygI/mfcThQw+PtFk9m5UrjfO/8UaIkzBadxEh6IV4O/2CwoIW57+rbhdg0haPzRrLEUOPwKIs1DTWUOOooay+jC27t1DjqGkpCwSLsuwlEq1EpL11PqKSEp/i93GM0Up5fTm/ffm3vPrTq5w85mQenfUo/ZL6Rdqsns/KlZCfLyIQJEQIYpxmp9/i8Ntw+ieMPIGDcg/ioIEHcWDOgQE909at3dQ56qhx1FDdWN0iDjWNns9eguH9ufl9UU1Rq21d2hXQOaXEp7TfCvGzLjkuGa01Go1bu1sWrVt/dmt3h3UCXe90O3l49cOU1JVwzwn3cNkhl/XqllHQaGyE1avhj3/suK4QECIEMYTWmp01O1tCO/6c/rjscV1y+v6wKItxuAmpDEwd2G3bG5wNe4lKoAKzrXJbq/qNrsZu2RMsxmSO4fPzP+eggQdF2pQexRdVVXxfX88Fubl7r1yzBhwOGR0UREQIeij+nH5BYQEldebxDsF2+qFGKUVSXBJJcUn079P9ZxU5XI5WAlLfVI9SCouytCwKn88hWG+z2KQV0AWmrFkD4F8IVq40ryIEQUOEoAfg6/Sbwzy+Tn/6yOk9wumHg3hrPJnJmWQmZ0baFCHYrFwJQ4fCwO61QoU9iBBEGd5O3zuu35bTzx+Yz4EDDiQ5LjnClgtCmFi5UloDQUaEIII0O/2CwoJWIR5/Tj9/YD4H5R4kTl/o3RQVwbZt0lEcZEQIwoTWmh3VO1qN0/fn9GeMmmHCO+L0BaE1JSXw8MPmvbQIgooIQQjw5/QLCgsorTcPYbMoC/tl7ydOXxA64rXX4L33zLJunSkbOhQmToysXTGGCEEQqGms4b0t75m4fpEJ8/g6/RNHnyhOXxDao6HBPETmvffg2GNN2cyZkJgIhx9uMooecwxMmgS22Hddzc/rCseos9j/NsPA9urtnPrMqViVlXHZ48TpC0IgOJ1mYljzHf9nnxkxsFr3CMF778GUKUYMehn19d+zZs2RjBv3NP36HR/SY4kQBIHmSUPi9AWhA5xO88SwN9+Ejz6CqipTPn48XHIJHH00TJ1qBAJwT5uGpZfOw6ipWYXTuZuEhMEhP5YIQRCwWqxMHjI50mYIQvRz7bVw++0wfLhJG33MMTBtGvT3P4nQpXWvFgKLpQ/JyWNCfiwRAkEQwsNLLxkRmD8f/v3vgDZxak1vTStXU7OKlJQJKBX6Zy33nDSOgiD0XDZtMg+Qz8+Hu+4KeLMHCgspdThCZ1eUorWL2to1pKbmh+V4IgSCIIQWux3OOMN0Aj/3HCQkBLzpws2b2d4YHQkEw0l9/Q+43fWkpoYnWaGEhgRBCC2XXWaeKfzaa5CX1+nN43phH0FNzSqAsAmBtAgEQQgdjz4KS5bA9dfDiSd2aRe2XioE4eooBhECQRBCQUWF6RS+4AIzKugvf+nyrnqnEBSEraMYRAgEQQgmLhcsXgyjR5u8QH/4g3nIvLXrDq23hYZMR/HasHUUQwBCoJSyKqUu7+yOlVJDlFIfKKU2KKW+U0r90VO+SCm1Uym11rPM6IrhgiBEGV99ZZLBXXwxjBtnJoXdfTekpbW72Te1tbxcVtbm+t7WIgh3RzEEIARaaxcwqwv7dgILtdZjgcOAS5VS4zzr7tJaT/Asb3Rh34IgRAulpXDhhUYEdu6E5cvNrOEDDgho8/k//cSlP/3U5vreJgQ1NQVA+DqKIfBRQ58ppe4DngHqmgu11qvb2kBrXQQUed7XKKU2AIO6YasgCNGEywUPPgg33AC1tXDFFfDnP3fYAvBms93OF9XVZHolkXN5kq01E2eJzgj2lhu34Kp1MfKukUHdb7g7iiFwIZjief2rV5kGjg5kY6VUHjAR+BI4HPi9UupcoADTatjtZ5uLgIsAhg4dGqCZgiCEhc8/h0svhbVrTX6gf/3LhIM6yRO7dgHQ6OX8m9zuVnWitUVQ+mIpukmHRAjC2VEMAXYWa62n+VkCFYEU4AVggda6GngAGAFMwLQY7mjjmIu11vla6/zs7OyATkYQhBCza5eZIXz44VBWBs8+C+++2yUR0FqzrLgYAIeX83f4tgiiUAi0S2PfZMdRHNxZz263M+wdxRCgECil0pVSdyqlCjzLHUqp9AC2i8OIwHKt9YsAWutdWmuX1toNPAwc0p0TEAQhDLhccO+9ZjTQk0+a5HEbNsBvfgNddNQrq6vZ3NDAsIQEHFq35N9v8hGCaGwRNGxrQDs0rhoXrjpX0PYbiY5iCHz46CNADXCmZ6kGHm1vA2WeprAE2KC1vtOrPNer2qnA+s4YLAhCmNm8GY46yjwnePJkWL/ePCQmJaVbu122axeJFgtzPJlHmwWgJ4SG6n+qb3nfWBS8FBi1teGdUdxMoH0EI7TWp3t9/otSam0H2xwOnAOs86p7HfA/SqkJmD6GrcDFnbBXEIRwoTU89BBceaV5Itjjj8PZZ3e5BeCNw+3mmZISTsnKIivO5BdtdLuJt1j2Cg1FYxpq+0/2lveOYgfJI4PzHJJIdBRD4EJgV0odobX+FEApdThgb28DT11/v6AMFxWEaGfnTjMr+O234bjjTJqIIUOCtvs3ysupcDo5JyeHTXbjShxthIaihfK3ykk7JI24fnGtWgSOouD0E2it2b37PVJT88PaUQyBh4YuAe5XSm1VSm0F7kPu5AUh9tDazAPYf3/45BO4/34jBkEUATBhof5xcRzfty8JnuGhjZ6QkG9oKBpw1blYN2MdRQ8XAWD/0U7iPubxmZU177J+/ektfRxdpaamgPr678nJmdtteztLhy0CpZQFGKO1PlAplQbgGf0jCEIsUVpq8gO98ILpC3jsMRg1KuiH2d3UxGvl5cwfOBCbxUK8J/TTPHLINzQUDbjqXKD39AfU/1RP+hHpNG5vpMbyPjVlL+J0VhAXl9nlYxQXP4rFkkj//rODZXbABDKz2A383vO+WkRAEGIMt9vkA9p/f3jlFfjHP0xrIAQiAPBsaSkOrTlnwACAPS2CKA4NuerNyKCm0iZcdheNvzSSvG8y8QPiaXKVANDYWNT1/bsaKCl5iqys07DZOhyQGXQC7SN4Ryl1JXsj9vvKAAAgAElEQVTPLK4IiVWCIISOpiaTB+jjj43D/+wzky30wAPhnXcCTg3RVZYVFzM2OZlJnlFHiR4hqHY6jXlRGBpy2z1hq9Im7JtMn0by6GTic+OxK5MnyeEoAvbv0v7Ly1/B6axkwIB5wTC30wQqBOd7Xi/1KtPA8OCaIwhC0Kmrg5UrjdP/5BPzvt7T2TlqFJxyCkydCnPmQHx8SE352W7ns+pqbt5nH5QnJHSoJyXF2xUVHJyWFpWhIXe9J2xV4mgZMZQ0Oon4AfHUJXgLQdcoLn6UhIQh9O0b0DzdoBNoH8HZWuvPwmCPIAjdpbwcPv10j+NfvRqcTrBYzF3/734HRx4JRxwBnvBMuFjuSSkxNyenpWxQQgJT0tJ4oayMG/LyojM0ZN8TGmoeMZQ0Kon43HjcSSYw0lUhaGzcSUXFfxk69NqwjxZqpkMh0Fq7lVK3A5PDYI8gCJ1l+/Y9Tv+TT+C770x5fDwccghcdZVx/FOmQHr448/NaK1ZtmsXU9PTGZaY2GrdGdnZXLF5M5vq61ulm4gWmlsETaVN1P9YT/zAeGwpNuJybZBWCXS9j6C4eBngjlhYCAIPDf1XKXU68KLu7hgpQRC6jtbw44/G4TfH+LdtM+tSU00OoLlzjeM/+GDwcbiR5KuaGjba7VzjJ4nk6R4heKGsjLHJwZmcFUya+wh0k6bm6xqSxxgbbQPtYDOtBYejuNP71VpTXLyU9PQjSE4ObvK6zhCoEFwBJAMupVQDZqKY1loHnm9WEISuoTUUFMATT5gkb55EbfTvbxz+5Zeb1wMP7NaTwELNsuJiEi0WzvCTRHJoYiKHpKbyfGkpf4rCbMPNo4YA6r+vJ/1I07Ky5O4ZRNmV0FB19ZfY7T8ydOhV3TeyGwQqBOnAWcA+Wuu/KqWGArkdbCMIQnfYssVM7nriCdMKSEiAk06C6dON4x81KijpHsKBw+3m6ZISTs7MJN3m3+2ckZ3N1T//zE/19X7XR5LmFkEzyaNNi0BlVUIjWHW/LgmBmTuQTHb2mUGxs6sEKgT3A27M8wf+iklA9wJwcIjsEoTeSUWFuet/4gkzrBPMiJ4rr4QzzoCMjMja10Xeqqig3JNSoi1O9wjB0yUlYbQsMLxbBGBGDAGQvhtKIN4+Foftm87t02WnpORpsrNPx2ZLDZapXSJQIThUaz1JKbUGQGu9WykV2nFmgtBbaGiA1183zv/11804/3HjzMSuuXMhCkMlnWXZrl1kx8Xx63792qwzPCmJSSkprK6tDaNlgdFWi8Ddx4wYsu0ehT35M9zuRiyWhID2WVa2ApermgEDfhtcY7tAoELQpMy4Jg2glMrGtBAiRlNTEzt27KChoSGSZkSExMREBg8eTJwna6PQA3G7TUfvE0/Ac89BVZUZynnZZSbD54QJPSbs0xGVTU28WlbGRQMHdvjYyTOys6NeCJRNteQZcrpLwa1QpTkwCFyuuoCFwMwdGEZGxtSQ2NwZAhWCe4GXgP5KqZuAM4AbQmZVAOzYsYPU1FTy8vJaJqb0BrTWlJeXs2PHDvYZMsSMDY/SZ7oKfvj+e+P8ly+HX36BPn3gtNPgnHPMIx+juLO3qzxXWkqj1u2GhZo5PTub67ZsCYNVncNV70LFKyzxFuIHxmOJM/85h6ME6jJwlxthcLnqiItru9XTTEPDdnbvfpdhw27ETNWKLAEJgdZ6uVJqFXAMZsTQKVrrDSG1rAMaGhp6nQgAKKXIzMyktLQULrwQli41QhAX1/4SH99xnUjXt1pj5i64FUVF8PTTRgBWrzbnefzxJvQza5YRgxhm2a5djElKIj+14zj46ORkxvfpw7q6ug7rhhO33Y0lyUJ8dnzL0FGApqYSLPZ+uEpN69zlCszuXbseBzQDBpwXCnM7TaAtArTWPwA/hNCWTtPbRKCZlvM+9VTIyzMx5Y4Wh6P157q6zm0TrukjwRCaaBC9ujp46SXj/N9914SC8vPhnntg9mwI4O44Fthqt/NJVRV/90op0RHn5ORw9c8/h9iyzuGud2NNsrLv0n2x9dvjNh2OXdicWTTtMmVud8dCsGfuwFSSkqIjS0/AQiBEISefbJZw4HJ1TXBCvU1jI9TWBr6NK3jPlw2IvDy47jo46yzYd9/wHjsKeMKTUuIsz+MoA2HhkCGcnp3NiC+/DJVZncZld2FJtpB+eOuZ2U1NJdjYl/pi40oDaRFUV3+O3b6JoUOvD4mtXUGEoBsopbjiiiu44447ALj99tupra1l0aJFAe+jurqasWPHcuqpp3LfffcBsGrVKubNm4fdbmfGjBncc889kW/9WK1miaKZql1C6/AIFMCxx5qZvpH+7SJEc0qJX6Wnk5eUFPB2FqUYEOLkd53FXW9CQ744HCWk2I6EGtNB7HJ1PAeiqOhRLJY+ZGefEXQ7u4oIQTdISEjgxRdf5NprryUrK6tL+7jxxhuZOrX1qIH58+ezePFiDjvsMGbMmMFbb73F9OnTg2GyoJQJ7USZo4lFCmpq+Mlu56ouPN3MGmXi6ba7sSa37sh3uRpwuaqJTxoADeYGqaPQkMtVR2nps/Tv/xtstpSQ2dtZYkIIFiyAtWuDu88JE+Duu9uvY7PZuOiii7jrrru46aabOn2MVatWsWvXLk444QQKCgoAKCoqorq6msmTTY6/c889lxUrVogQCD2OZbt2kaCU35QSHWGLMiFw1bv2ahE0NZmJbwmpOWA3LZ6OQkOlpS/ictVExdwBbyI/bqmHc+mll7J8+XKqqqpalS9fvpwJEybstZxxhmkOut1uFi5cyG233dZqu507dzJ48OCWz4MHD2bnzp2hPxFBCCJNnpQSM7OyyOjCfJdoc0z+WgQOhxGCpL4DW1oEHQlBcfFSEhOHk55+RGgM7SIx0SLo6M49lKSlpXHuuedy7733kuQVBz3rrLM466yz2tzu3//+NzNmzGCIT7PZX3LXiPcPCEInebuigtKmpoDmDvgj2q755uGj3jS3CJL650KDuRFsTwgaGrZRWfk+eXl/iYq5A97EhBBEmgULFjBp0iR++9s9zb3ly5fvdbcPMHLkSJ5//nm++OILPvnkE/79739TW1uLw+EgJSWFP/7xj+zYsaOl/o4dOxg4cGBYzkMQgsWyXbvItNk4oZ2UEj0JV70ZNeSNw2FGRCWmD0SpJjTt9xEUFz8GEDVzB7wRIQgC/fr148wzz2TJkiWcf755qmdHLYLly5e3vF+6dCkFBQXccsstAKSmprJy5UoOPfRQHn/8cS677LLQnoAgBJEqp5OXy8r4XW4u8TEy691tN/MIvGnpI0jIISGnhAZnfJstAq3dFBcvJSPjaBITh4Xc3s4SG79SFLBw4ULKysqCsq8HHniA3/3ud4wcOZIRI0ZIR7HQo3i+OaVENx+DOSElhftGjQqSVd3Df4ugBIslGau1D/ED4lGOpDaFoKrqUxoatkRdJ3Ez0iLoBrVeybFycnKo72Ie9Xnz5jFv3ryWz/n5+axfv7675glCRFhWXMyopCQOCSClRHusyc8PkkXdp60+gvh4M1EuPjceGhLbFILi4kexWlPJzj415LZ2hZC1CJRSQ5RSHyilNiilvlNK/dFn/ZVKKa2U6toAfEEQoo5tDQ18VFXFOTk5Udfh21W0S6Md2s+ooV3ExZnO8ITcBHR9ot8+AqezlpKS58jOPhOrNTrzSoUyNOQEFmqtxwKHAZcqpcaBEQngOOCXEB5fEIQws9yTUuLsGMql5LKbtCS+LYLGxp17WgQD4qEuAadj7xTapaXP43bXkZsbnWEhCKEQaK2LtNarPe9rgA3AIM/qu4Cr8TzfQBCEno9Lax4vLuaI9HT26URKiWjHXW+eReDdImho2E59/fekpU0B9oSGnA17C0Fx8VKSkka21I1GwtJZrJTKAyYCXyqlTgZ2aq3bfa6bUuoipVSBUqqgtLQ0DFYKgtAd7ty+nR/tdi6NseHOzQ+l8W4RlJe/AkBW1imARwjsSXu1COz2n6mq+ogBA+ZFdags5EKglErBPN94ASZcdD3w546201ov1lrna63zs7swRV0QhPCxrraWG7Zs4dSsLGZ3ItNoT6D5ecXeo4bKyl4mKWk0ffqYjLLxAzydxc7WfQRm7oAiJ+fcsNnbFUIqBEqpOIwILNdavwiMAPYBvlFKbQUGA6uVUt0bZyYIQsRwuN2cs2EDGTYbD40eHdV3vl2huUXQPI+gqamSysoPWloDsCc05PbKPmrmDjxG377HkpjY+cR74SSUo4YUsATYoLW+E0BrvU5r3V9rnae1zgN2AJO01sWhsiOUKKVYuHBhy+fbb7+9UymorVZrSw6ik72eK7BlyxYOPfRQRo0axezZs3E4HME0WxCCyqKtW/mmro7/jBlDdgxmdW0JDXlaBBUVb6K1s7UQZMeTkJOBttlbyiorP6SxcVvUzh3wJpQtgsOBc4CjlVJrPcuMEB4v7DSnoe7qRLKkpCTWrl3L2rVreeWVV1rKr7nmGi6//HI2btxI3759WbJkSbBMFoSg8nlVFbf+8gsXDBjAzC6mYo92WkJDnj6CsrIVxMXlkJZ2aEsdZVX0P3kI2ranRVBcvBSrNa2VYEQrIZtQprX+FPN84/bq5AXjWAveWsDa4uDmoZ4wYAJ3n9B+NrvupqH2h9aa999/nyeffBKA8847j0WLFjF//vyg7F8QgkWt08m5GzYwNDGRO0eOjLQ5IaMlNJRsxe1upKLiDfr3/5+9EsdZLH1wuxvQ2uV57sDz5OScg9Ua/SOoJMVEN+lqGmqAhoYG8vPzOeyww1ixYgUA5eXlZGRkYLMZjZY01EK0ctXPP/NzQwOP7bsvabbYTVLg3SLYvfsDXK5asrJm7VWvebKYy1VPaelzuN32HhEWghhJMdHRnXso6WoaaoBffvmFgQMH8vPPP3P00Uczfvx40tLS9qoXa51vsYZLa8qbmtjlcFDieW1eypqasCpFH6vVLBZLy/tkr/e+65rXR+tv/2Z5OQ8WFnLlkCH8KiMj0uaEFO8WQVnZCiyWPmRkHLNXvT1CUOeZOzCmVfgomokJIYg0XUlDDbSklx4+fDhHHXUUa9as4fTTT6eyshKn04nNZpM01BHC4XZT6uPUWzn5ZsfvcFDa1ITbzz7ilCI7Lg6X1tS53dS5XJ2eQdlKLDoQDn+fk9tZZ+tiZtDypiYu+PFH9u/Th7/l5XVpHz2J5gllKhHKd75Cv34nYLXu/ezuZiGoq/uGqqpPGT78lqgVcl9ECIJAV9JQ7969m+TkZBISEigrK+Ozzz7j6quvRinFtGnTeP7555kzZw6PPfYYs2bt3QwVOk+9y9WhU29+v9vp9LuPZIuFnPh4cuLjGZ6YyGFpaeZzXFxLeX/P+wybrZUj0FrT4BGEZmFoWdxu6r3e+67z/byzsXGv9U1+HmrUHvFttFQ6+vx6eTllTU28MX48iVZrxwfqwdi32tn97m4A6vUqHI6iNjt/LRYjBDt33g9YyMk5O1xmdhsRgiCxcOFC7rvvvoDrb9iwgYsvvhiLxYLb7eZPf/oT48aNA+DWW29lzpw53HDDDUycOJELLrggVGb3aLTWVDmdezn1Eh8H3+z4a10uv/vJsNnIiYujf3w8+/fpwzEZGcah+zj4nPh4+nTD8SmlSLJaSbJaCcX4mqZ2RKb5fX0AIlPe1MQvPuvt7tZtntuGD2dCN7OLRivapSl/s5zCBwqpeLMCFPSf25+KumWAlczME/1u19wiKC9/jX79fk1CwiC/9aIREYJu0J001FOmTGHdunV+1w0fPpyvvvqq2/b1RNxe8XZ/Tr3E532jv0d7AlnNDjwujkPbuWvvHx9PQow8PCXOYiHDYiEUEXu31qbF4najtWZAQkIIjhJZGosbKV5STOHiQhp/aSQ+N55hNwwj98JcEock8tVXL5ORMZW4uL5+t9+TWVT3mE7iZkQIhJDT5HZT0oFTb17airfblGpx3jnx8eyXnNzmXXumzdbl+LfgH4tSpNhspETakCCjtabyw0oKHyik7KUytFOTcUwGI+8cSebJmVjizHVUX/8T9fUbGDiw7WHczUJgs2WQmXlym/WiERECoUvYm+Pt7Tj15pBNRRvx9qTmeHtcHMMSEzkkLa3Fqfs6+L4+8XZB6A5Nu5vY9fguCh8spP6Hemx9bQy6bBADLx5I8pjkveqXlb0MQFZW2w6+uY+gf/+5fjuToxkRAgEwd0bVHufu69R9h0Tuaifenma1tjjvccnJHOWJt/sLy6RYreLchbBS/XU1hQ8UUvJ0CW67m9RDU9l36b5kn5m91zOJvSkrW0FKysR2nzeclDSSwYMXMHjwglCYHlJECAQA5v3wA497HirijQIy4+JaOlMPbueuvX9cXMyPIhF6JrXra9l02SYqP6zE0sdCzjk5DLxkIKkTO+7wdjh2UV39BXl5i9qtZ7HYGDnyriBZHF5ECAQAzsjOZnyfPnvdtWfHxUm8XeixOKudbF20lR337sCWbmPk3SMZMG8AtvTAXV9Z2auA9jubOFYQIRAAmJmVxcxIGyEIQUJrTclTJWxeuBnHLge5F+Yy/ObhxGXGdXpfZWUrSEzMo0+fA0JgaXQgt3rdoLtpqH/55ReOP/54xo4dy7hx49i6dSsgaagFoTvUrq9l7bS1bDhrAwmDE5j05STGPDSmSyLgdNaye/e7ZGbOiun+LBGCbtDdNNTnnnsuV111FRs2bOCrr76iv+fJTpKGWhA6j7PayaaFmyiYUEDdujpGPzSaSSsnkXbw3vm7AmX37rfRurFHpJLuDrERGlqwANYGNw01EybA3aFLQ/3999/jdDo57rjjAEhJMSO0JQ21IHSOljDQlZtxFHcvDORLWdnL2Gz9SE8/IgiWRi+xIQQR5NJLL+WAAw7g6quvblXeUdK5n376iYyMDE477TS2bNnCscceyy233MLu3bslDbUgBEjdd3X8dOlPVH1URWp+Kvuv2J+0Q7reAvDG7W6ivPw1MjNnYrHEtquMjbPr4M49lHQ1DbXT6eSTTz5hzZo1DB06lNmzZ7N06dJWj6xsJpZjk4LQFZw1Trb+ZSs779mJNc3K6IdGk3tBLsoavP9KVdWnOJ27Yz4sBLEiBBGmK2moBw8ezMSJExk+fDgAp5xyCitXruT888+XNNSC0AbapSleVsyW67fgKHKQ+7tc9rl5H+Kzgv+sZPPsgUT69Ts+6PuONkQIgkBX0lAffPDB7N69m9LSUrKzs3n//ffJz8+XNNSC4AetNRVvVvDzn36mbl0dqQensv+L+5N2aHDCQP6OV1b2Mn37HueVTC52kVFDQWLhwoWdGj1ktVq5/fbbOeaYYxg/fjxaay688ELApKG+8847GTlyJOXl5ZKGWujVVH9dzTdHf8O6E9fhtrsZ9+w4Jn05KWQiAFBZ+QGNjdvIzj6j48oxgLQIukF30lADHHfccXz77bd7lffmNNSC0Ix9s52fr/uZ0mdLicuOY9R9o8i9MBdLfOjvX3fu/BdxcVlkZ58Z8mNFAyIEgiBEFY4SB9v+to3CBwtR8Yphfx7GkCuHYEsNj7tqaNhGWdkrDB16TY/LItpVRAgEQYgKXHUutt+5ne3/3I7L7mLghQMZ9n/DSBgQ3ofg7Nz5AEC7zx6INUQIBEGIKG6nm+IlxWxdtBVHsYOs07IYfvNwv88FCDUul52ioofJyjqFxMQhYT9+pBAhEAQhIrib3JS9VMbW/9tK/Q/1pB+Rzn4v7kf65PSI2VRS8hROZwWDBl0WMRsiQciEQCk1BHgcGAC4gcVa63uUUn8DZnnKSoB5WuvCUNkhCEJ00bCtgcKHCyleUoyj2EHy2GT2f3l/MmdmRnTypNaanTv/RZ8++5ORMTVidkSCULYInMBCrfVqpVQqsEop9Q5wm9b6RgCl1B+APwOXhNAOQRAijNvppuKNCgofKqTizQpQkDkjk9yLc8mcnhnUGcFdpbr6c2pr1zJ69IO9bjZ/yMZhaa2LtNarPe9rgA3AIK11tVe1PoAOlQ2hpjtpqD/44AMmTJjQsiQmJrJixQpA0lALsUPjzka2/mUrX+7zJetnrad2TS3DbhjGYVsOY/yr48k6KSsqRABgx45/YbNlkJNzdqRNCTthmVCmlMoDJgJfej7fpJTaDpyFaRH42+YipVSBUqqgtLQ0HGZ2mu6koZ42bRpr165l7dq1vP/++yQnJ3P88WYqu6ShFnoy2qUpf7Ocdaes44thX7B10VaS90tmvxf347Bth7HPX/chcWh0DctsbCykrOwFBgw4v1fMJPYl5J3FSqkU4AVgQXNrQGt9PXC9Uupa4PfA//lup7VeDCwGyM/Pb7fVsGDjRtZ6Te4KBhNSUrh71Kh263QnDbU3zz//PNOnTyc5OVnSUAs9lsbiRoofKabo4SIatjYQ1z+OoVcNJffCXJKGJ3W8gwhSWPgQWrsYNOh/I21KRAipECil4jAisFxr/aKfKk8Cr+NHCHoKXU1D7c3TTz/NFVdcAUB5ebmkoRZ6DNqtqfygksIHCylbUYZ2ajKOzmD4rcPJOiUrLLOAu4vb7aCw8CH69ZtBUtKISJsTEUI5akgBS4ANWus7vcpHaa03ej6eDPzQ3WN1dOceSrqahrqZoqIi1q1bx69//WvAjFzwpbd1XAnRj6PUQfHSYooWF2HfZMfWz8agPw5i4EUDSR4d/vH/3aG09DmamnYxeHDvGjLqTShbBIcD5wDrlFLNjw+7DrhAKTUGM3x0GzEwYqgraaibefbZZzn11FOJizNPU8rKypI01EJUorWm6uMqCh8qpPSFUrRDk35EOnmL8sg6PQtrojXSJnaJnTvvIylpFH37HhdpUyJGyIRAa/0p4O9W9o1QHTNSdCUNdTNPPfUU//jHP1o+SxpqIdpoqmii+PFiih4qov6HeqzpVgZePJCBFw+kz349u2O1urqA6uqVjBx5D0pFfxgrVPTeMw8ynU1DDbB161a2b9/O1KmtJ69IGmoh0mitqfqiig3nbeCLQV+w+fLNWNOtjHl0DFMKpzDq3lE9XgTAZBm1WlMYMGBepE2JKJJioht0Nw11Xl6e345gSUMtBAO3042ryoWz0rlnqXK2/uyvrMqJc7cTV7ULa4qVAfMGkHtxLqkTUiN9SkHF4SihpORpcnN/h80Wumcb9ARECAQhSnE3ujt22O04dXedu/0DKLCl27Bl2LCmW7Fl2EjcJxFbhinrs38f+s/uH7b0z+GmqOg/aO1g0KDfR9qUiBObv7AgRBitNe56d+BO3Oezq8qFu6F9R65sqpUTt2XYSM5NbnHurRbfsnQb1lQrytI7R6S53U4KCx+gb99j6dNnbKTNiTgiBILgB+3WuGpcgYdSfJy4s9KJdrafPUUlqL0cduKwxPYduFeZJdkiQ4u7SFnZChobdzBq1P2RNiUqECEQYhK3042ruoP4uB8n3xJTr3J2mAXL0sfSyjnH58STPCa53bvw5vfWdGuPHW4ZC+zceR+JiXlkZp4YaVOiAhECocfjbnTzzbHftHbota4Ot2sJqaT73I2348BbHHmaFUucDLrraWit2b37XaqqPmL48H+ilIgxiBAIMYCKV1gSLSSNSuowNt7i/FNtUZP1UggtbreDysqPKCt7mfLyV2hs3I7NlklurgzLbkaEoBsopbjiiiu44447AJOGura2NuBU1FdffTWvv/46breb4447jnvuuQelFKtWrWLevHnY7XZmzJjRUi74RynFge8cGGkzhCiiqamSioo3KCt7hYqKN3G5qrFYkujb93jy8haRmTmTuLh+kTYzapC2bTfoThrqzz//nM8++4xvv/2W9evX8/XXX/PRRx8BMH/+fBYvXszGjRvZuHEjb731VrBNF4SYw27fyo4d97J27TF8/nk2GzacRWXlh/Tvfyb77/8Khx9exvjxK8jNPZ/4+OxImxtVxESLYOOCjdSuDW4a6pQJKYy6O3RpqJVSNDQ04HA40FrT1NRETk4ORUVFVFdXM3nyZADOPfdcVqxYwfTp07t8LoIQi2jtpqZmFeXlr1BW9jJ1desASE4ex5AhV5KZOYu0tEN6deqIQIkJIYgkXU1DPXnyZKZNm0Zubi5aa37/+98zduxYCgoKGDx4cEt9SUMtCHtwuRqorPzAE+9/FYejELCQnn4EI0bcQWbmySQnj4y0mT2OmBCCju7cQ0lX01Bv2rSJDRs2sGPHDgCOO+44Pv7441b7aEb6B4TeTFNTOeXlr1NW9gq7d7+Ny1WLxdKHfv1OICtrFpmZM4iLy4y0mT2amBCCSNOVNNQvvfQShx12GCkpKQBMnz6dlStXcs4557SIAyBpqIVeSX39ppaQT1XVp4Cb+PiB5OScTWbmyWRkTMNqja7HXfZkRAiCQFfSUA8dOpSHH36Ya6+9Fq01H330EQsWLCA3N5fU1FRWrlzJoYceyuOPP85ll/XeB2YIvQOt3VRXf9ni/OvrNwDQp88BDBt2PZmZJ5OaOkni/SFChCBILFy4kPvuuy/g+meccQbvv/8+48ePRynFCSecwMyZMwF44IEHWoaPTp8+XTqKhZjE5bKze/e7nnj/azQ17UIpG+npUxk48BIyM08mKSkv0mb2CkQIukF30lBbrVYeeughv+vy8/NZv359t+0ThGjD4SihvPw1T7z/v7jddqzWNPr1m05W1iz69TuBuLi+kTaz1yFCIAhCUHE6a2lo2Izdvsmz7Hnf2LgD0CQkDCU39wIyM2eRkfErLJb4SJvdqxEhEASh0zQ1Vfh19Hb7ZpqadrWqGxfXn6SkEWRkHEVy8r706zeDlJQDZTRcFCFCIAjCXmitcTiKWzl677t8p7OyVf2EhMEkJY0kM/MkkpJGepYRJCWN6PVP/+oJiBAIQi9FaxeNjTvavLN3u737vKwkJuaRlDSC/v3nejn6kSQm7oPVuvf8F6HnIEIgCDGM266FBgoAAAusSURBVO2goWGrX0ff0LAFrR0tdZVKIClpOElJI+nb95iWO/vExBEkJg7DYomL4JkIoUSEQBB6OC5XPXb7zy1O3juE09DwC7DnkZdWawpJSSPp02d/srJOaXVnn5AwSMbp91JECLpBd9NQX3PNNbz++usA3HjjjcyePRuALVu2MGfOHCoqKpg0aRLLli0jPl5GVfRmmpoqvRx861eTb2cPNlsmSUkjSEubQk7OOa1i9nFx/aWTVtgLEYJu0JyG+tprryUrK6tT277++uusXr2atWvX0tjYyNSpU5k+fTppaWlcc801XH755cyZM4dLLrmEJUuWMH/+/BCdhRANmAy0pXuFb/Z0zpa3qh8fn0tS0kj69Tu+VQjHOHsZhy90jpgQgo0bF1Bbuzao+0xJmcCoUXe3W6c7aai///57pk6dis1mw2azceCBB/LWW2/xm9/8hvfff58nn3wSgPPOO49FixaJEMQAWrtpbCz0G8Kx2zfjctV41baQmDiUxMQRZGef0SqEk5Q0HKu1T8TOQ4g9QiYESqkhwOPAAEyQcrHW+h6l1G3ATMABbAZ+q7WubHtP0U1X01AfeOCB/OUvf+GKK66gvr6eDz74gHHjxlFeXk5GRgY2m/lpJA11z8LtdtLYuM1vCKeh4Wfc7oaWukrFkZi4D0lJI0lPP7JVCCcxMQ+LJSGCZyL0JkLZInACC7XWq5VSqcAqpdQ7wDvAtVprp1LqVuBa4JruHKijO/dQ0tU01Mcffzxff/01U6ZMITs7m8mTJ2Oz2dBa71VXYrrRhcvVQEPDljZmzm5Da2dLXYsliaSkkSQnjyYzc4ZXCGckiYlD5OHpQlQQMiHQWhcBRZ73NUqpDcAgrfV/vaqtBM4IlQ3hoitpqAGuv/56rr/+egDmzp3LqFGjyMrKorKyEqfTic1mkzTUEcLprPE7kcpu39ySJqEZqzWdpKSRpKbm07//HK8Qzgji43NFyIWoJyx9BEqpPGAi8KXPqvOBZ9rY5iLgIjApm6OZrqShdrlcVFZWkpmZybfffsu3337L8ccfj1KKadOm8fzzzzNnzhwee+wxZs2aFa5T6TVorXE6K/yGcOz2TTQ1lbSqb9IkjCQj4yifmbMjsdn6ibMXejQhFwKlVArwArBAa13tVX49Jny03N92WuvFwGKA/Pz8veMlUUZn01A3NTVx5JFHAia89MQTT7T0C9x6663MmTOHG264gYkTJ3LBBReExObeypo1v6Kubp2fNAlDSEoaQVbWya1COCZNQmqErBWE0BNSIVBKxWFEYLnW+kWv8vOAk4BjtL+geA+hO2moExMT+f777/2uGz58OF999VW37RP8k5y8L336jPfpnJU0CULvJZSjhhSwBNigtb7Tq/wETOfwVK114J5TEILEmDGLI22CIEQVoWwRHA6cA6xTSjUP8r8OuBdIAN7xxFVXaq0vCaEdgiAIQjuEctTQp4C/HrQ3gniMXtlJ14OjaYIgRCE9NsNUYmIi5eXlvc4paq0pLy8nMTEx0qYIghAj9NgUE4MHD2bHjh2UlpZG2pSwk5iYyODBgyNthiAIMUKPFYK4uDj22WefSJshCILQ4+mxoSFBEAQhOIgQCIIg9HJECARBEHo5qieMulFKlQLbgrCrLKAsCPuJduQ8Yws5z9gh3Oc4TGud3VGlHiEEwUIpVaC1zo+0HaFGzjO2kPOMHaL1HCU0JAiC0MsRIRAEQejl9DYh6C3ZxuQ8Yws5z9ghKs+xV/URCIIgCHvT21oEgiAIgg8iBIIgCL2cmBECpdQJSqkflVKblFJ/8rN+qFLqA6XUGqXUt0qpGX7W1yqlrgyf1Z2nO+eplDpAKfWFUuo7pdQ6pVTUpjDt6nkqpeKUUo95zm+DUura8FsfGAGc4zCl1Hue8/tQKTXYa915SqmNnuW88FreObp6nkqpCV7X67dKqdnhtz5wuvN7etanKaV2KqUCf+ZtsNBa9/gFsAKbgeFAPPANMM6nzmJgvuf9OGCrz/oXgOeAKyN9PqE4T0yCwW+BAz2fMwFrpM8pBOc5F3ja8z4Z2ArkRfqc/r+9swuxqori+O8vkxJ+myCZkUZGadqUMmUkhoWJlWZKoklpPVRCUJQZFTEKUZlhmk8hJBkW2JOg+RUVZmqROWo+qJnkaCFlZH6EX6uHvc3DdcTxnjn33OasH1zOuufsc+763z2XtffZc9YqU+NS4LFoDwcWR7sbsCduu0a7a96aMtB5PdA32j2BX4EueWtqaZ2J4/OAJcCCSvvfWmYEdcBuM9tjZieAT4AxJW0M6BTtzsCBswckPUj4Mf1YAV/TkEbnCGCrmTUAmNkfZna6Aj6XQxqdBrSXVANcDpwADmfv8iXTHI39gM+j/UXi+L3AGjM7ZGZ/AmuAkRXwuRzK1mlmO81sV7QPAAeBiz4lmxNp+hNJg4AewOoK+HoerSUQXAXsS7xvjPuS1AOTJTUSqqQ9AyCpPaGG8szs3UxN2ToJoyuTtErSZkkvZu1sCtLo/BQ4Shg9/gLMMbNDmXpbHs3R2ACMi/ZYoKOkK5p5brWQRud/SKojjLR/ysjPtJStU1Ib4B1geuZeXoDWEgiaqldZ+n+xE4FFZtYLGAUsjh0wE5hrZkcy9rElSKOzBrgTeCRux0q6O0tnU5BGZx1wmnAroQ/wvKRrs3S2TJqj8QVgmKQfgGHAfuBUM8+tFtLoDBeQrgQWA1PN7ExWjqYkjc5pwAoz20dO/G8L05TQCFydeN+LxK2fyBPE6bOZbYgLpd2B24DxkmYDXYAzkv4xs8ov2FycNDobga/M7HcASSuAWzk3Va0m0uicBKw0s5PAQUnrgcGEW3/VxEU1xtshDwFI6gCMM7O/4izorpJzv8zS2RSUrTO+7wQsB141s40V8bg80vTnEGCopGlAB6CtpCNmdt6Cc2bkvcjSQgs1NYQfeh/OLdT0L2nzGTAl2jcSOkklbeqp7sXisnUSFhU3ExZQa4C1wH15a8pA5wzgg2i3B3YAA/PWVKbG7kCbaL8OzIp2N+Dn2Kddo90tb00Z6GxLGKg8m7eOLHWWtJlCDovFuX+BLdgRo4CdhHuIr8R9s4DR0e4HrI8dtAUY0cQ1qjoQpNUJTCYsiG8HZuetJQudhBHV0qhzBzA9by0pNI4HdsU2C4F2iXMfB3bH19S8tWShM/69noz9e/ZVm7eeLPozcY1cAoGnmHAcxyk4rWWx2HEcxykTDwSO4zgFxwOB4zhOwfFA4DiOU3A8EDiO4xQcDwSOkyGSvonb3pIm5e2P4zSFBwLHSUlMcNckZnZHNHsTnnp2nKrDA4FTOCS1l7RcUoOk7ZImSNor6S1J38bXdbHtA5I2xboHayX1iPvrJb0vaTXwoaT+8bwtMd9839jubA6rNwlpBLZIek7SOkm1CZ/WSxpY4a/CcQAPBE4xGQkcMLObzewmYGXcf9jM6oAFwLtx39fA7WZ2CyG1cDJr6yBgjJlNAp4C5plZLSG3UWPJZ74ErDOzWjObS3iydAqApOsJT5lubWGdjtMsPBA4RWQbcE+cAQy1mOAM+DixHRLtXsAqSdsIaYL7J66zzMyOR3sD8LKkGcA1if0XYilwv6TLCOkiFqVS5Dgp8EDgFA4z20kYzW8D3pD02tlDyWZx+x4h98sA4EkgWd7zaOKaS4DRwHFC4Bh+ER+OEQrKjAEeJlSmcpxc8EDgFA5JPYFjZvYRMIeQjhtgQmK7IdqdCXnjAS5YGzjWPNhjZvOBZUDp/f6/gY4l+xYC84HvrDqL5zgFobXUI3CcS2EA8LakM4Tslk8TKpu1k7SJMECaGNvWA0sl7Qc2EtIMN8UEQsW0k8BvhKyTSbYCpyQ1EArqzDWz7yUdJqTNdpzc8OyjjgNI2gsMtli4p0Kf2ZNQUOYGq97KW04B8FtDjpMDkh4FNhHy1nsQcHLFZwSO4zgFx2cEjuM4BccDgeM4TsHxQOA4jlNwPBA4juMUHA8EjuM4BedfSKd9NtpRl44AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "for n,(rank,df) in enumerate(data_by_rank):\n",
+    "    df_sorted=df.sort_values(by=\"post_sparsity\",axis=0)\n",
+    "    sparsity=df_sorted[\"post_sparsity\"]\n",
+    "    error=df_sorted[\"pre_error\"]\n",
+    "    plt.plot(sparsity,error,label=\"N={:}\".format(rank),color=colorsequence[n])\n",
+    "plt.legend()\n",
+    "plt.xlabel(\"sparsity\")\n",
+    "plt.ylabel(\"error\")\n",
+    "plt.title(\"error as a function of sparsity\",fontsize=\"xx-large\")\n",
+    "plt.show()\n",
+    "plt.close()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 57,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "class monotone_invert:\n",
+    "    def __init__(self,knots,sign=\"increasing\"):\n",
+    "        knots=[(t,y) for (t,y) in knots if not numpy.isnan(y)]\n",
+    "        if len(knots)<2:\n",
+    "            return\n",
+    "        print(knots)\n",
+    "        self.tvals=numpy.array([t for t,_ in knots])\n",
+    "        self.yvals=numpy.array([y for _,y in knots])\n",
+    "        self.N=len(knots)\n",
+    "        self.L=numpy.tril(numpy.ones(shape=(self.N,self.N)),k=0)\n",
+    "        def objective(d):\n",
+    "            error=self.yvals-self.L.dot(d)\n",
+    "            return 0.5*error.dot(error)\n",
+    "        \n",
+    "        def jacobian(d):\n",
+    "            error=self.yvals-self.L.dot(d)\n",
+    "            return self.L.T.dot(error)\n",
+    "        \n",
+    "        def hessian(d):\n",
+    "            return self.L.T*dot(self.L)\n",
+    "        \n",
+    "        print(self.N)\n",
+    "        pm=1\n",
+    "        if (sign==\"decreasing\"):\n",
+    "            pm=-1\n",
+    "        constraints={\"type\":\"ineq\",\"fun\":lambda x:pm*x}\n",
+    "        res=scipy.optimize.minimize(objective,self.yvals,method=\"COBYLA\",jac=jacobian,hessp=hessian,constraints=constraints)\n",
+    "        print(res)\n",
+    "        d_best=res.x\n",
+    "        self.y_approx_vals=self.L.dot(d_best)\n",
+    "        print(self.y_approx_vals)\n",
+    "        \n",
+    "        self.linapprox=scipy.interpolate.interp1d(self.tvals,self.y_approx_vals,copy=True,bounds_error=True)\n",
+    "        \n",
+    "    def invert(self,yval):\n",
+    "        if not (min(self.y_approx_vals)<yval<max(self.y_approx_vals)):\n",
+    "            return numpy.nan\n",
+    "        \n",
+    "        tval=scipy.optimize.brentq(lambda x:self.linapprox(x)-yval,min(self.tvals),max(self.tvals))\n",
+    "        return tval"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 86,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "[(0.8388654327627629, 26.63803139771705), (0.851687514954323, 26.958007515716748), (0.8650419351690942, 26.952958843064685), (0.8725219776895965, 26.990672702260014), (0.8784872660775024, 27.039436594751677), (0.8826995277177598, 27.107602503295283), (0.8852063376852094, 27.20029112619097), (0.8872804729674099, 27.313105633909874), (0.8878465633146485, 27.47106940880744), (0.8952729857129805, 27.645194093681265)]\n",
+      "10\n",
+      "     fun: 1.7465851504021037e-05\n",
+      "   maxcv: 3.204926956869903e-20\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.66347675e+01,  3.22010981e-01, -3.20492696e-20,  3.22751269e-02,\n",
+      "        5.14609460e-02,  6.60504354e-02,  9.49331500e-02,  1.10501223e-01,\n",
+      "        1.59678761e-01,  1.72998698e-01])\n",
+      "[26.63476755 26.95677853 26.95677853 26.98905366 27.0405146  27.10656504\n",
+      " 27.20149819 27.31199941 27.47167817 27.64467687]\n",
+      "[(0.8480086590097955, 25.36197487949973), (0.8663548974850813, 25.66748831383359), (0.8839022026959875, 25.591666460155107), (0.8942064579237392, 25.597565626508263), (0.8962998659218736, 25.726619578670263), (0.8997734472491155, 25.831229954294248), (0.9022597468179228, 26.009027804741805), (0.9051879229336092, 26.513574437011215), (0.906129528841706, 26.131917995570717), (0.9100540269577614, 26.576390813456225)]\n",
+      "10\n",
+      "     fun: 0.038195812021937975\n",
+      "   maxcv: 7.32657626504511e-20\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.53610541e+01,  2.58373558e-01, -7.29072292e-20, -7.29188180e-20,\n",
+      "        1.06238291e-01,  1.06229834e-01,  1.77143082e-01,  3.13464918e-01,\n",
+      "       -7.32657627e-20,  2.53722707e-01])\n",
+      "[25.36105412 25.61942768 25.61942768 25.61942768 25.72566597 25.83189581\n",
+      " 26.00903889 26.32250381 26.32250381 26.57622651]\n",
+      "[(0.8582278355670888, 24.401842511771523), (0.8936744459824406, 24.343229865424878), (0.9013143984785664, 24.57246012806053), (0.908879226767728, 24.723011401582752), (0.9120431759673145, 24.903298316153407), (0.916585803861727, 25.128870597103948), (0.9182241643510174, 25.307036037160085), (0.923680152937285, 25.425537392231607), (0.9244442654917396, 25.715511558804522), (0.9282573406208912, 25.894979424435977)]\n",
+      "10\n",
+      "     fun: 0.0010256981152863887\n",
+      "   maxcv: 2.1590737733573267e-19\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.43746097e+01, -2.15907377e-19,  1.89455692e-01,  1.64086799e-01,\n",
+      "        1.71869606e-01,  2.36170026e-01,  1.62588905e-01,  1.34710672e-01,\n",
+      "        2.76667136e-01,  1.86762438e-01])\n",
+      "[24.37460975 24.37460975 24.56406544 24.72815224 24.90002184 25.13619187\n",
+      " 25.29878077 25.43349145 25.71015858 25.89692102]\n",
+      "[(0.8648039548726123, 23.53705497300391), (0.8944010552242152, 23.756524428006948), (0.9127285001068114, 23.691146425415372), (0.9151909375374808, 23.988770696234344), (0.9198208152035846, 25.05158084398013), (0.9199216659194108, 24.72009516487679), (0.9212544556078396, 24.38145483647575), (0.9215534495709452, 25.573799364708613), (0.9217793266014028, 24.12994877031085), (0.9220035013843578, 25.220248779641423)]\n",
+      "10\n",
+      "     fun: 0.6345199957693715\n",
+      "   maxcv: 3.557706235855446e-20\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.35352481e+01,  1.89599956e-01, -3.55770624e-20,  2.62517981e-01,\n",
+      "        7.30581550e-01, -2.51205908e-20, -2.80457617e-20,  1.33977447e-01,\n",
+      "       -3.26325035e-20,  3.68715097e-01])\n",
+      "[23.53524811 23.72484807 23.72484807 23.98736605 24.7179476  24.7179476\n",
+      " 24.7179476  24.85192505 24.85192505 25.22064014]\n",
+      "[(0.8812751435156017, 22.636278271387898), (0.9104357215404324, 22.78596344770866), (0.919387967849143, 23.08736296153922), (0.9240519831368692, 23.298403361291445), (0.9287888212620552, 23.535499082978905), (0.9337104164968394, 23.703208733677567), (0.9342045774665652, 24.818266151599808), (0.934618933958842, 24.401882615429468), (0.9356992871040192, 25.00547558932549), (0.936971005073724, 23.90587189010079)]\n",
+      "10\n",
+      "     fun: 0.3581002896083334\n",
+      "   maxcv: 1.764117320315744e-19\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.26138615e+01,  1.95129462e-01,  2.72433790e-01,  2.16030927e-01,\n",
+      "        2.43502260e-01,  1.59182791e-01,  8.33257226e-01, -1.74562499e-19,\n",
+      "       -1.76411732e-19, -1.64932643e-19])\n",
+      "[22.6138615  22.80899096 23.08142475 23.29745568 23.54095793 23.70014073\n",
+      " 24.53339795 24.53339795 24.53339795 24.53339795]\n",
+      "[(0.8851190690740085, 21.946046310304236), (0.9178129817676176, 22.32535595505711), (0.9295563275839092, 22.62522228432957), (0.9328199304429364, 23.265542877435518), (0.935662702280138, 24.027407736896695), (0.9364706301026184, 24.801416841360897), (0.9368171040431896, 24.50401453438995), (0.937286512283342, 23.58883198125333), (0.9429635158559566, 24.8451137482077), (0.9441767767768364, 25.35023202841469)]\n",
+      "10\n",
+      "     fun: 0.39998989464849644\n",
+      "   maxcv: 1.9156791606209056e-19\n",
+      " message: 'Maximum number of function evaluations has been exceeded.'\n",
+      "    nfev: 1000\n",
+      "  status: 2\n",
+      " success: False\n",
+      "       x: array([ 2.19278786e+01,  4.20630237e-01,  2.65766141e-01,  6.52043633e-01,\n",
+      "        7.60078994e-01,  2.74283404e-01, -1.91567916e-19, -1.78015389e-19,\n",
+      "        5.33254602e-01,  5.23867187e-01])\n",
+      "[21.92787859 22.34850883 22.61427497 23.2663186  24.02639759 24.300681\n",
+      " 24.300681   24.300681   24.8339356  25.35780279]\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\richa\\Anaconda3\\lib\\site-packages\\scipy\\optimize\\_minimize.py:502: RuntimeWarning: Method COBYLA does not use gradient information (jac).\n",
+      "  RuntimeWarning)\n",
+      "C:\\Users\\richa\\Anaconda3\\lib\\site-packages\\scipy\\optimize\\_minimize.py:513: RuntimeWarning: Method COBYLA does not use Hessian-vector product information (hessp).\n",
+      "  'information (hessp).' % method, RuntimeWarning)\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAEaCAYAAADHQod0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlcVOX+B/DPM8MM64iggCACbojAiIKhWaa5b5hW7kViWpH+romamV3lWnltkVKLyso17VpZmkZ6vWZm5gYqKghugRub7DuzPL8/zgwOwwADDgzL9/16nRczz3nOOc8cBuY7z8o45yCEEEIIaWoicxeAEEIIIW0TBSGEEEIIMQsKQgghhBBiFhSEEEIIIcQsKAghhBBCiFlQEEIIIYQQs6AghLQojLGxjLHzjLFSxhhnjHmZu0w1YYx5aco429xlMUZLurcPQ/PaIs1dDkIIYGHuAhBiLMZYBwDfAbgB4P8AlAHIMmuhADDGIgDkcM63mrssDdVc721TYIx1AxAKYC/n/IK5y0NIW0JBCGlJHgFgB+AdzvkP5i6MjggA1wFs1UtPBWANQNHUBWqA5npvG4M1AKXO824AVgFIAUBBCCFNiJpjmgHGmE1D9pnqGi2Is+ZnnllLYSQuKOOcq8xdFiO0qHurizEmZoxJjc2v+Z0o685JCGlsFISYCGPMljG2hjF2gzFWzhi7xxiLZow56OX7nTF2hzHWizEWwxgrABCj2Repaa8OZIx9zhjLBFCsc2x7xtgGzfHlmmutZoxZ6l1jq+Y8XRhj/2GM5QJIqKP8LzDGDmnKXcEYu6W5lkwvn5gxtpwxlsQYK2GM5TDG4hhj8424RxMZY3sZY7c15U/XlLWTEcemANimeXpY8/p+13m9KQaOGarJN1QnTXuP5YyxjxhjmZrX8StjzNPAOToyxtYzxv7WlDmNMfYTY8xPs58D6AxgiOa8XFuWmvqEMMY6a8qcoTlnImNsEWOM6eXTvlc8NPetUHO/P9f/nddy3+p8z9R2b2s57zOMsVOMsTzGWBFjLJkx9rleHs4Y+4YxNp496GtykzG20MD5jH3/aX+n8xhjSxhjNwCUAxhUz3JFah7PBnBYs2uLzu8wkjH2iubxIAPl1Zbj5druEyGkdtQcYwKaf+hHAPgB2AQgGYA3gPkABjLGHuWcl+scYgPgfwAOAVgCQP+b8nYAaQBWA3DQu0Y/AF8DOA/gCQD/1KSFGCjarwCuAHgTQF0fWv+A0KSwHkAugEAALwOQA3hSJ99KzbYVQBQAKwC+AAYD+LSOa8yB8J77HEAmAB8A8wAMYIz11btH+l4DMBbASwDWQgiqMuq4Xm02Q3idqwG4QmhS+QbC6wAAMMacAJwG4AHh9cYBaA/hfgRpyvA8gA2asryrObSoposyoe/FXwA6QbhfNwFMgHAvuwNYoHeINYTf+zEASwE8CuH3kgXhd1+jerxn6nVvGWPDAXwP4A8Ab0FobuoGw+/Bvpr0zwFsATAFwMeMMSvO+Xs6+Yx9/2kthPBe2gSgBEBaPcul9YfmNb+hOddxTfpFCM1pUQBegPA70xUKod/M7lrOTQipC+ectofcALwOoAJAoF76RAAcwFydtN81aW8YOE+kZl8MAKa371XNvsV66R9p0ifopG3VpH1ej9dgayDtBc15BuqknQfwSwPvk6FrDNFcY7oRx8/W5B2hl74VQIqB/EM1+YcauMc/6eWN0KT76qR9pUkbb+DcTOfxHQC/G8jjpTl+tk7a+5q0Z3TPBeBHTbrcwHvlNb3z/gwg04j7VZ/3jMF7W8N5PwKQD8Cijnxcs43VSZMAOAUhcHBswPtP+zvNAGD/EOWK1Hk+Qv/3pLNvJ4QmKiudNGsABQC+bcjfAW200fZgo+YY05gOIBbALU31fUfGWEcAJwGUAhhu4JjPajnf55xz/eWNJ0JomtGvbXhfZ7++6DpLrsE5LwYAxpiIMWavKf8fmt2P6GTNB+DHGOtt7LkNXIMxxtpprpEA4Z/8I7UebHr69/+o5md3QLgPAJ4F8Cfn/Bf9gw38fow1EcB1zvkevXN9oHmq/61dDeALA2V10m+qqOFa9X3PGCMfgC2AMUbkTeac/6p9wjlXQKg5sobw4a9NN/b9p7WTc57/EOUy1mYA9gCe0kl7GoAM1TsiE0LqiYIQ0/CBUE2epbdlQvhn66yXP8fAP1BdfxtI8wLwN+e8TDeRc54G4UO8q5HnMYgxFswYOwzhQysPQvlvanbr9mv5J4R/wImavgyfMMYMVZcbuoY3Y+xHCN8i8/HgPrXXu0ZTSNV7nqv56aj56QThw+eiia/rBSDJQHqi5qf+7zGTc16ql6Zf1tquVd/3jDGiIbyG/Zo+HLsYYzMZYxIDea8aSEvW/Ky8fj3ef1qG3tv1KZexfoMwauYFnbRQAHfxoC8JIaSBqE+IaYgg1HqsrGF/rt5z/Q8VfTXtr+nbN6thX13XEQ4WJqU6CuGf7euan6UAxAAOQidY5ZwfZ8K8CuMhfJOdDGA+Y2wz5/zFWq4hg9CvQQHgXwCuQaiS5wD+g4cLiGu6L+JajqlpxArTe97QGo/a1HZO/X21jazRL2t9rlXTe6buE3KeyRjrB2AYgNEARgGYAeB1xtjjnHPdPjF1XqM+7z8d1d7b9SyXUTjnnDG2DcBbjDFXCPdtOIAPOOfq+p6PEFIVBSGmcR1Ae875/xrxGikAHtN06Kv8ZsuEkSX2mv0N9RSEzrLjOeeV52GM9TKUWVOLswvALsaYBYSRFXMYY+9xzg198wWED4ZOAJ7knP+ucw1rPHwtSG4N5+j2EOfMglBb08eIvPX5ME8BYKgpq7fOflNJQSO9ZzTNKoc0Gxhjr0Jo9pkJoYOnlqH3kDZNW5tRr/eficpV5bA6TrsVwheMWRACIjGoKYYQk6DmGNP4FkBvxthM/R1MGNJaV7W5MfZDmEwqXC99qc7+htJ+29Z/P7yhn1EzuqMSF+ZbuKR5WtvrrOkarxtIq69rANoxxoJ0yimF0DGzQTTfcn8AMJgxNlZ/P2NVhtMWwfhAaj+AHoyxyXrnWqKz31Qa5T2j/x7QOKf5qf8e6KV7/zRNI/+AMLJEG7Qb/f4zYbl0aWtIDP4ONYHRUQhNMs8DOMU5TzaUlxBSP1QTYhrrAIwD8A1jbAKEphkA6AHgGQjDBbc+5DW+gjDEdR1jzAfCzI6DIVQ3H9BsDXUQwodCDGPsCwgfCiEADP1Tv8IY+xPAWQgjFHpBGFaaDGEIa01OQKhd2MEY2wihX8gwCJ0Osx+i7IAQBP4bwF7G2MeatOfw8DOVvgmhyelnxtgWCB9oMgjl/hbCUGpAuBfPMcZWQegDUcQ5r+kDfi2AqQC+ZYxph+iOhzBE9lPO+aUajmuIxnrPfMUYc4Yw/PcWgI4AXoHQRPKjXt5EAP9hjH0GoR/FVAADAKzgnOdo8tTn/WeqculKgNA0GM4YKwJQCOAy5/yyTp4tAHZoHr9Sz3IRQmpi7uE5rWWDMF/GCgCXIfxDzQMQD2EkgodOvt8B3KnhHJEQqoZ71LC/PYCNEP6ZV0D4AHsbgKVevq2a89Q6VFHvmOEQ5sQohhAsbIXQOVN/OONyCHMm3Ne8zhsQRju4GHGNQAgd/QogNKH8CKFzYgqArUYcPxs1DCOFMP9FLISJq+5AqD4fjpqH6PbQO94LBoZpAnCB0OHxtuae3wOwB1WH8nYG8IvmdXFohgvXcs7OEJqwsjTlvQJhiLD+sGyD7xWd++BlxD0z9j1T4701cM5nIAwjT9OUX3tP+unl4xDmXhkPYWh3GYQmmIiHeP8Nhd6w9waWK9LAsZc198jQfmsIf9OlEJpezf4/hzbaWsPGOG+MfneEkLaOCbPJ7uScP2fusjwszcRvaQAOcc5nmLs8hLQW1CeEEELqNgVCn5HN5i4IIa0J9QkhhJAaMMaGQej3tBJCk1JjjoAjpM2hIIQQQmq2EsBjEDpdz+HUfk2ISVGfEEIIIYSYRYuoCenYsSP38vIydzEIIaRFiYuLu885dzJ3OQipSYsIQry8vBAbG2vuYhBCSIvCGNNfI4mQZoVGxxBCCCHELCgIIYQQQohZUBBCCCGEELNoEX1CCCGEtG5xcXHOFhYWXwHwB31Bbi3UAC4rlcq5QUFBmYYyUBBCCCHE7CwsLL7q1KlTbycnp1yRSERzR7QCarWaZWVl+aanp38FYKKhPBRtEtLIOAeKi81dCkKaPX8nJ6cCCkBaD5FIxJ2cnPIh1G4ZztOE5SGkzSgsBPbtA8LDge7dgWnTzF0iQpo9EQUgrY/md1pjrEHNMYSYgFoNXLgAHDokbCdOAErlg/337gH/+hewapX5ykgIIc0N1YQQ0kCZmcA33wDPPw+4ugJBQcCbbwLHjlUNQACgvBz4+GPhJyGkeWKMBc2bN89d+3zlypUuERERbvU5R05OjsjZ2blPaGiohzbt+PHjNt7e3r4eHh7+s2fP7qJWq01Z7BaNghBCGmDhQsDFRQhAvvlGCEjq8uKLgKVl45eNENIwUqmUx8TEOKSlpTW4lWDx4sWdBwwYUKib9uqrr3pGR0enpqSkXL5586bVDz/80O7hS9s6UBBCSAN4etYvv0gE5OQ0TlkIIaYhFot5aGho1po1a1wacvzx48dtsrKyJCNHjizQpqWmpkqKiopEI0aMKBaJRJg1a1b23r17HUxX6paN+oQQokOpBP77X6CiApg0qeq+GzeE/h4HDwL/+1/d5+rSBRg9GhgzBhg+HGjfvnHKTEhrM2cOuly+DBtTntPfHyWbN+N2XfmWLl2aKZfL/SIjI9N10z/77DPH9evXd9LP7+XlVXbw4MGbKpUKixcv7rJr166bMTExlTUdqampEldXV4X2uaenZ0VaWprkYV9Pa0FBCCEa9+4Bo0YBCQmAnx8wciTw++9C0HHwIHD9upCvWzdg9mxgz56qzTBWVsCQIQ8CDx8fgDFzvBJCSEM5Ojqqp0yZkr127Vpna2vrys4b4eHhOeHh4TXWZ7733ntOo0aNyuvRo4dCN53z6gN+GP1jqERBCCEab70lBCCA8NPBAVAoABsb4MknhX4gY8YAPXoIedRq4I8/hLTRo4EnngCsrc1XfkJaC2NqLBrT8uXLMwIDA32nT59+X5tWV03IqVOn7M6ePWu3ZcsW55KSEpFCoRDZ2dmpli1blqlb85Gamirt1KmTQv88bRUFIYRACDb27Kma9uSTwJIlwODBQi2Hvo0bAQlVqhLS6ri4uKhCQkJyd+3a1XHGjBnZQN01IT///PPf2scbNmzoEBsbaxsdHX0XAGxtbdVHjhyxffLJJ4t37tzZYf78+UZ0ZW8bqGMqIQD+/BMoKKia9t//AkOHGg5AAApACGnNVqxYkZ6Xl2eSL+rR0dGpr7zyipenp6e/l5dX+ZQpU/JNcd7WgGpCCAFw5Ej1NImEAg1C2pKSkpLz2sddunRRlpaWnq8tf03+8Y9/ZAPI1j5/4oknSq5du5ZggiK2OlQTQgiA1auBo0eFobQumsF5X35p3jIRQkhrRzUhhEAIPu7fFzqb7t4N9OwJyGTmLhUhhLRuFIQQAiAxEXj7bWFEzGOPARb0l0EIIY2OmmNIm5OdDahUwmOFQgg++vUD7t4FtmyhAIQQQpoKBSGkzSgsBD76COjVC/jsMyAuDujfH1i5Epg8WagNeeopc5eSEELaDvrOR1q9u3eFOT0+/xzI1wyMW7xYmKLdxQXYu5eCD0IIMQeqCSGt1qVLwvTqXbsC7733IAABhLVh3N2FmVEpACGEAABjLGjevHnu2ucrV650iYiIcKvPOXJyckTOzs59QkNDPbRpx48ft/H29vb18PDwnz17dhe1Wl3tuPfff9/pk08+6fBQL8CEUlJSJGPGjOnW2NehIIS0GgUFwPHjQq3H6NFAnz7Atm1Cvw9Dbt0ybiE6QkjbIJVKeUxMjENaWlqDWwkWL17cecCAAYW6aa+++qpndHR0akpKyuWbN29a/fDDD+30j3v99dezFixYkK2fXl9KpfJhTwEA8PLyUhw8ePCmSU5WCwpCSIvDOXDnDrB/v9Cp9JlngO7dAXt7Yf2Wf/xDmO20LjNnCvkJIc1PRATcGEOQqbaICNRZoyEWi3loaGjWmjVrXBpS5uPHj9tkZWVJRo4cWTn/cmpqqqSoqEg0YsSIYpFIhFmzZmXv3bvXofrrjXBbuXKlCwAEBwf3Cg8P7yyXy3t7eXn5Hzx40A4QAoyXXnrJ3dvb29fb29v33XffdQaAzp07y5csWeIaFBTUa/PmzQ4JCQmWgwcP7unn59c7KCio1/nz560AYNeuXfZ9+vTx6d27t++gQYO8b9++bQEAv/zyi52Pj4+vj4+Pb+/evX1zc3NFycnJ0p49e/oBwjT0o0aN6j548OCenp6e/q+88kplbdFHH33U0cvLyz84OLjX9OnTPXVrgIxBfUJIs1VSIqxse+8ekJoKxMcDFy4IW3YDvy9YWgKhoUBEhLDKLSGE6Fq6dGmmXC73i4yMTNdNr2sBO5VKhcWLF3fZtWvXzZiYmMqajtTUVImrq2tlfaynp2eF7oJ2NVEqlezSpUtXdu/ebb969Wq3MWPGXF23bp1TamqqZUJCQqJEIkFGRoZYm9/KykodFxeXDACPPvqo96ZNm1Llcnn5b7/9ZhseHu5x6tSpqyNHjiyaPn16kkgkQlRUVMfVq1d3+vLLL++sW7eu04YNG1JHjRpVnJ+fL7KxsVFnZlZd3iYxMdEmPj4+0draWt2jRw//JUuWZFhYWODDDz90PXfuXGL79u3VgwYN8vbz8yutz/1utCCEMdYFwHYAnQCoAWzinK9njO0G0EuTrT2APM5538YqB2nejh4VRqXcuyd0INUGHXfvAnl5pruOoyMwf76wuTToOw4hpC1wdHRUT5kyJXvt2rXO1tbWlZ036lrA7r333nMaNWpUXo8ePao0AHPOq+VljNVZjilTpuQCwKBBg4qXLl0qBYDffvut3SuvvJIl0awn4eLiotLmDw0NzQWA/Px80fnz5+2mTJnSXbuvoqKCAcDff/8tnTRpkntWVpakoqJC1KVLl3IAGDhwYNGSJUu6TJ06NWfGjBm53bt3r9Zp5fHHHy/o0KGDCgB69OhRduPGDcvMzEyLAQMGFGrLMXny5NyrV6/WsNqWYY1ZE6IEsJhzfo4xJgMQxxg7zDmfps3AGFsHgBbyaSUuXwaSk4WhsNpt9GggKKjmYz74APj118YrU48eQq3HCy8ANjaNdx1CSOuxfPnyjMDAQN/p06ff16bVVRNy6tQpu7Nnz9pt2bLFuaSkRKRQKER2dnaqZcuWZerWfKSmpko7depUQ0+1B6ysrDgAWFhYQKVSMUAIaBhj1aMaADKZTA0AKpUKMplMmZSUlKifZ8GCBR4LFy5MnzVrVv6BAwdkq1evdgOANWvWpE+aNCl/37599oMGDep98ODBqzY2NlUCEalUWnldsVjMFQoFMxRg1VejBSGc8zQAaZrHhYyxKwA6A0gEACaEglMBDGusMjRnp08LnSh1BQfX3kfB0DGmxLnQBKIbRBQUPHi8ZInQj6Imn30GREdXTZPJhCBErRamRU9Lq7qlppqu/IwJQUffvsI2YICwCq5YXOehhBBSycXFRRUSEpK7a9eujjNmzMgG6q4J+fnnn//WPt6wYUOH2NhY2+jo6LsAYGtrqz5y5Ijtk08+Wbxz584O8+fPz6zpPLUZMWJEweeff+40fvz4Qm1zjG5tCCDU5Li7u1ds3rzZYc6cOblqtRqnT5+2fvTRR0sLCwvFHh4eCgDYunVr5UichIQEy+Dg4NLg4ODS06dP216+fNkqODi4pK7yDB48uHj58uVdsrKyxO3bt1ft27fPoXfv3s2jOUYXY8wLQD8Ap3WSBwPI4Jxfa4oyNDdHjwLLl1dNW7as9iDE0DFN6cYNoakkP19oKtH/ee5c9WPeeUcYHpuRIczLoc/SsmFlsbISRr9oA46+fQG5HLCza9j5CCHNS1QU7kVF4Z65rr9ixYr0bdu2OZniXNHR0akvvvhi17KyMvbkk08WTJkypUEtAIsWLcq6evWqpY+Pj5+FhQV/4YUXst58880s/XzffvvtzXnz5nm+9957rkqlkk2ePDnn0UcfLV2xYsW9GTNmdHdxcano379/8a1btywB4P3333f+66+/2olEIu7t7V367LPP5t+6davOfitdu3ZVLFq0KO2RRx7p7ezsrPD29i61t7dX1XWcLpNUp9R6AcbsABwD8C7n/Eed9M8AXOecr6vhuJcAvAQAHh4eQamm/MrciJRK4MQJ4QPSQaf/c0UF8McfwoiOixeF4aE39QY/eXkJs3mKRMK3ev3t2jXgypUmfTn1IhIJNR66evYEHn8c6NQJcHWtvm3fDrzyiuHzicVCns6dATc3oZajXz8h4OjZk6ZXJ6QujLE4znl/c5fDGPHx8SkBAQH3685JmpP8/HyRvb29WqFQYPTo0T1mz559PzQ0tEqPvvj4+I4BAQFeho5v1H/jjDEJgD0AduoFIBYAngZQY28BzvkmAJsAoH///o0bKT2k3Fzg4EEhwPj1V6FWYOtWYNw4ICZGSP/vf4UmDSsr4YPUwFw1KC8XzsW5sKnVDx5zLuwzp0GDhJEl9vZA+/bCT93HX38NLFxY9ZiRI4FPP635nH37Ai++KAQZ2mBD+9PJiZpSCCGkOVu6dKnbH3/80a68vJwNGTKk4LnnnqvXkILGHB3DAHwN4ArnPEpv9wgASZzzO411/cZ27ZoQXOzfL/TTUOlVQEVEAGFhQvDg5gbMmAFMmAAMHy50kFy7tnrTSmiokF4TQ8c0pV69gJdfrnm/j48w+2i7dkJfEJlMCFxqM2CAsBFCCGl5Nm3a9FCf441ZE/IYgOcBXGKMXdCkvck5jwEwHcC3jXhtk1Mqgb/+ehB4JCfXnj8vD3jrLWDSJKHmQ39EVnCwsH6JrsGDaz+noWNMzcqqahAhkz147upa+7GjRgkbIYQQYozGHB3zJwCDg6E557Mb67qmlJcHHDokBB0xMfVrDlGrhb4QgYGG9w8bJmz10ZBjCCGEkOaKuvbpuX69ajNLQ6bht7UV5sdoV211AEIIIYRotfkgRKkETp58EHgkJTXsPB4eQEiIsA0d2vChp4QQQkhb0SaDkPz8qs0sOTVOP1MzxoQ+GtrAQy6v3u+DEEJIy8EYC5o7d27Gl19+eQcAVq5c6VJUVCSOiooyar4SsVgc1LNnz1IAcHNzq/jtt9+uA0BSUpJ06tSp3fLz8y38/f1L9uzZ87d2RtS2rs0EITduCEHHgQPAsWMNb2YZOVIIOsaPpzVICCGkNZFKpTwmJsYhLS0t3dXVtd6fEpaWlmpD06VHRES4L1iwIOOll17KnTlzpsf69es7Llu2rNokY22RyNwFaExXrgizkPr6ChNdLVoEHDlSvwCkSxfg1VeF+T/u3wd++gmYM4cCEEIIaW3EYjEPDQ3NWrNmjcn+w6vVapw8eVIWFhaWCwBz5szJ3r9/f3tTnb+la9U1IRcvAu+/X//jdJtZ+vShZhZCCGlKc/bN6XI587JJl5z0d/Yv2fzU5tt15Vu6dGmmXC73i4yMTNdNr2sBOwCoqKgQ+fv79xaLxXzJkiXpzz//fF5GRoaFTCZTaVe+9fLyqsjIyJCa6GW1eK06CElPrzsPIEweNmqUMJnY+PHCFOOEEELaHkdHR/WUKVOy165d62xtbV05t3VdC9gBwPXr1y96eXkpEhMTpSNHjuwVGBhY6uDgUG0tlZpWwm2LWnUQUlIiTCmeZ2ASWXf3B7UdTz4pTNJFCCHE/IypsWhMy5cvzwgMDPSdPn165Vo2xtSEeHl5KQDA19e3YuDAgYVnzpyxeeGFF3ILCwvFCoUCEokEKSkpUmdnZ0XTvZrmrVX3CVm+HFi16sHzRx4BVq8Gzp8XFpCLjgbGjqUAhJA9iXvw9O6noVKr8MGJD/Bz8s/mLhIhZuPi4qIKCQnJ3bVrV0dtWnh4eE5SUlKi/qYNQLKyssSlpaUMANLS0ixiY2Pt+vTpUyoSiTBw4MDCLVu2OADA5s2bO0yYMKFe66u0Zq26JgQAnn5aWN59/Pi6px0npK1RqBRYfmQ51p0UFrN+Ye8L2HVpF17o+wIm9ppo5tIRYj4rVqxI37Ztm5Ox+S9cuGA1f/58T8YYOOd47bXX0oOCgsoAYN26dXemTZvW/Z133uns5+dXsnDhQlotWINx3vybpvr3789jY2PNXQxCWpRzaefgaucKV5nh6DutMA3TfpiG47eOV0l3b+eOpPlJsJXaNkUxSSNijMVxzvubuxzGiI+PTwkICKAP51YoPj6+Y0BAgJehfa26OYaQtiqjKAOPb34cbxx5w+D+YynH0O+LftUCEADIL8tHRnFGYxeREEIoCCGkNYo6GYVSZSlO3TlVJZ1zjg9OfIDh24fXGGiM6DYCHaw7NEUxCSFtXKvvE0JIW5Ndko3o2GhYii1xNfsq8svyYW9lj/yyfITtC8NPST8ZPI6B4b0R72HJoCVgNDkOIaQJUE0IIa3MhtMbUFRRhDXD1wAA4tLicDHjIvp/2b/GAETERNg/Yz+WPraUAhBCSJOhmhBCWpH8snxsOLMBY3qMQXFFMQBg5dGVOJd2DqXK0hqP2z9jP8b1HNdUxSSEEAAUhBDSqkSfjUZeWR5O3DqBg9cPAgBO3D5R6zFrh6+lAIQQYhbUHENIK1FcUYwPT34IKwsrFFYU1prXVmILC5EFxvYYi6WPLW2iEhLSvDHGgubNm+eufb5y5UqXiIgIN2OPF4vFQT4+Pr4+Pj6+w4YN66FNT0pKkvbp08fH09PTf/z48d3KysqqtXnu3LnT/s0332xWi4b069fPp7GvQUEIIa3EZ7GfIac0B2XKslrz9e7YG062TnC2dca2SdsgYvRvgBAAkEqlPCYmxiEtLa1BrQSWlpZq7Uyqv/3223VtekREhPuCBQsyUlNTL9vb2yvXr1/fUf/YWbNm5a9Zs8bIFc9qplCYbkb48+fPJ5nsZDWg5hhCWoEyZRkif4+sM99M+UxwzrE7YTeOhB6Bk63RE0IS0qQiDkW4fXTqI5MSwnCPAAAgAElEQVTNc71o4KK0qNFR92rLIxaLeWhoaNaaNWtcNm7ceNcU11Wr1Th58qRs3759NwFgzpw52ZGRkW7Lli3L0s23YcOGDrGxsbbbt2+/9cwzz3jJZDJVfHy8bVZWluTtt9++ExYWlgsAb731lst3333XgTGG4cOH50dHR98NDg7uFRwcXHT69Gm7cePG5b388svZYWFhnnfv3pUCQFRU1K1Ro0YVHz161CYiIsKjrKxMZGVlpd66devfAQEB5bGxsVZhYWFdFQoFU6vV2LNnzw25XF5uY2PTr6Sk5PyBAwdkq1evdnN0dFQkJydby+Xykr179/4tEomwe/du+zfeeMPd0dFRKZfLS1JTUy2PHj16vfqdMIyCEEJagdcOvoZiRXGN+0d0HYEVT6xAal4qZu+bjVVDVmGo19CmKyAhLcTSpUsz5XK5X2RkZJVaCWMWsKuoqBD5+/v3FovFfMmSJenPP/98XkZGhoVMJlNJJBJt/oqMjAxpXeXIyMiQxMbGJl24cMFq8uTJPcLCwnK/++67dr/88otDXFxckkwmU2dkZIi1+fPy8sRnz55NBoCQkJCuERERGaNHjy66du2adPTo0T1v3ryZEBAQUHbmzJkkiUSCvXv3yl5//XX3Q4cO3di4caPTq6++mhEeHp5TVlbGlEpltfJcuXLF+sKFCze9vLwUQUFBPocPH7YbPHhw8cKFCz1///33JB8fn4qQkJCu9b3fFIQQ0sIlZCVgU9ymaukMDL/O+hUR/42ApYUlXO1cMWHXBAzxHIJ/PvFPM5SUkObP0dFRPWXKlOy1a9c6W1tbq7Xp4eHhOeHh4Tm1HXv9+vWLXl5eisTEROnIkSN7BQYGljo4OKj08zHG6lwvZeLEiXlisRhBQUFl2dnZEgA4fPhwu+eee+6+TCZTA8JCe9r8M2bMqCzbiRMn2l27ds1a+7yoqEicm5srysnJEU+bNq1rSkqKFWOMKxQKBgCPPvpo8Ycffuh6584d6fTp03Plcnm5fnnkcnlx9+7dFQDg5+dXcuPGDalMJlN16dKl3MfHpwIApk+fnvPVV1/Vq3qVGoMJacGKK4oxesdocFT/n7b6ydUY3WM0HnF7BGfunsG0H6bBWmKNnU/vhFgkNnA2QggALF++PGPXrl0di4uLKz8jP/vsM0dtp1PdbcyYMd20eby8vBQA4OvrWzFw4MDCM2fO2HTq1ElZWFgo1vbVSElJkTo7O9fZccPKyqryj1q7xhvnvMZ5fLSBiTZfbGzsFW3/lMzMzIsODg7qZcuWdR4yZEjhtWvXEvbv33+9oqJCBACvvPJKzr59+65bW1urx44d6/3zzz/L9M9vaWlZWR6xWAylUmmStecoCCGkheKcY+7+ubhbWL3peoL3BLw5+E0AwCNujyCrJAvxGfHYNmkbOrfr3NRFJaRFcXFxUYWEhOTu2rWrsgNpeHh4jvZDXXfTNsVkZWWJS0tLGQCkpaVZxMbG2vXp06dUJBJh4MCBhVu2bHEAgM2bN3eYMGFCXkPKNWbMmIIdO3Z0LCwsFAGAbnOMrscff7zgvffec9Y+/+uvv6wBoKCgQOzu7l4BAF988UXla0tMTJT27t27/K233socNWpU3oULF6yrn7W6gICAstu3b1smJydLAWD37t2O9X1N1BxDSAv16dlP8Z/L/6mW3t2hO3ZM3lE56mVQl0EAgMWPLqb5QEiLETU66l5dHUkb04oVK9K3bdtmdNPChQsXrObPn+/JGAPnHK+99lp6UFBQGQCsW7fuzrRp07q/8847nf38/EoWLlzYoNWCn3322YJz587Z9O3bt7dEIuEjRozI/+STT6p9C9m0adPtuXPnenh7e/uqVCo2YMCAwkGDBt1atmxZ+ty5c7tu2LCh0+DBgwu0+Xfs2OH4/fffd7CwsOBOTk6Kf//730bddzs7Ox4VFZU6ZsyYno6Ojsp+/frV3DGtBiapTmls/fv357GxseYuBiHNxl+3/8KQrUOgVFftQGZtYY2TL55EQKeAKuln7p5BkGsQNcO0MYyxOM55f3OXwxjx8fEpAQEBDfpwJuaTn58vsre3V6vVaoSGhnr07NmzbNWqVZm6eeLj4zsGBAR4GTq+0ZpjGGNdGGNHGWNXGGMJjLGFOvv+jzGWrEl/v7HKQEhrlF6UjinfT6kWgADAFxO+qBaAAEBw52AKQAghJvfxxx939PHx8e3Zs6dfQUGBOCIiol6BZGM2xygBLOacn2OMyQDEMcYOA3AB8BSAPpzzcsaYc61nIYRUupV/CxN2TcC9wuq1pa/2fxXPBzxvhlIRQtqqVatWZerXfNRHowUhnPM0AGmax4WMsSsAOgOYB2At57xcs6/BhSekLVGqlRixfQSu5Vyrtm+g+0B8NOYjM5SKEEIarklGxzDGvAD0A3AagDeAwYyx04yxY4yxR2o45iXGWCxjLDYrK8tQFkLaFAuRBT4c9SEYqg7Rc7JxwvdTvodUXOf8R4QQ0qw0ehDCGLMDsAfAa5zzAgi1Lw4ABgJYCuA7ZmDgM+d8E+e8P+e8v5MTTS1NSFFFEb4892WVOUFsJDb4YeoPcG/nXsuRbVhGBpCQYO5SEEJq0KhBCGNMAiEA2ck5/1GTfAfAj1xwBoAaQLXFfAghD9wpuIPBWwYj5loMPhn7CeY/Mh9uMjccDzuOJzyfMHfxmh+FAvjoI8DbG5g5E7hntpGehJBaNOboGAbgawBXOOdROrv2AhimyeMNQAqAhmURokPNKyc/xPm08xjw1QBcz7mOAzMOYH7wfHw85mPEvRSHQNdAM5aymTp8GAgIACIigIIC4OJFwNMT+OMPc5eMNHOMsaB58+ZVViuuXLnSJSIiws3Y469duyZ97LHHenbr1s2ve/fuftpJvJKSkqR9+vTx8fT09B8/fny3srIyw9OetkGNWRPyGIDnAQxjjF3QbOMAbAbQjTF2GcB/ALzAW8JkJYQ0ssLyQmy7sA3Dtw/HooOLAAD7k/dj8JbBEDMxTsw5gbE9xwIQ+od0squ2llbbdvMmMHkyMGoUcOVK1X0iEeBY78kcSRsjlUp5TEyMQ1paWoMGbcyaNavrkiVLMm7evJlw7ty5K25ubkoAiIiIcF+wYEFGamrqZXt7e+X69eup9l+jMUfH/Amgpmjvuca6LiEtzZ2CO3jjf2/gxys/olRZCgA4l3YOxRXF2BK/Bf069cP+GfvhKjPZquatS0kJsHYt8P77QHm1dbcEFRXA5s1AVJTh/YQAEIvFPDQ0NGvNmjUuGzdurL4eQi3i4uKsVCoVJk+eXAAA9vb2agBQq9U4efKkbN++fTcBYM6cOdmRkZFuy5YtoxEXoGnbCTE7mVSGPVf2oExZVpmWV5aHHRd34MV+L+Kj0R/BVmprxhI2c3l5Qv+PmgIQxoB584Dly5u2XKTh5szpgsuXbUx6Tn//EmzefLuubEuXLs2Uy+V+kZGR6brpn332meP69eurVT96eXmVHTx48GZiYqJVu3btVKNGjep++/ZtyyeeeKLg008/vZOVlWUhk8lUEolEm78iIyODhrJpUBBCiBllFmdi9+XdsJHYVAlCAGBsz7HYFLLJTCVrQSwsAD8/4PTp6vsGDQI2bgQCqe8MMY6jo6N6ypQp2WvXrnW2trau7JwVHh6eEx4enlPTcUqlksXGxtqdPn06sWfPnhUTJkzovnHjxo7Tpk2rtlgdY4y6IGhQEEJIEytTluGnKz/hm0vf4ND1Q1BxFbo5dENOadX/bzdyb0CpVsJCRH+mBpWVAevXA+++KzTJtG8v1IoAgKsr8MEHwsiYGpY+J82YETUWjWn58uUZgYGBvtOnT68cNFFXTYiHh0dF7969S319fSsAYOLEibmnTp2yW7hw4f3CwkKxQqGARCJBSkqK1NnZWdGUr6c5a5LJyghpq8qUZXj72NuIuxcHALiceRmBXwRi5o8zcTHjIpYMWoJL4ZeQvCAZzrbOcLByQHj/cJx88SQuvnKRApCaZGQItR9vvAEMHSrMBbJzJyCVCmnJycCsWRSAkAZxcXFRhYSE5O7atauyA2l4eHhOUlJSov528ODBmwAwZMiQ4vz8fPG9e/csAODo0aPtfH19S0UiEQYOHFi4ZcsWBwDYvHlzhwkTJlSrHWmr6D8cMSivNA+n756GmqthI7GBpdgSBuaUazRWFlYGF2LTKlWU4mLGxYc+pjHdKbiD5UeW41rONRy4egBh/cKw6NAi2FvaY9/0fZjgPQEi9uB7wP+e/x+8O3jD0sKyycrYYh04IIyG+eknYNIkIa1XLyGtc2fzlo20CitWrEjftm2b0TNlWlhYYO3atXeGDh3qDQByubxk0aJF9wFg3bp1d6ZNm9b9nXfe6ezn51eycOFCmpZCg7WE0bH9+/fnsbGx5i5Gq8U5R0peCuLS4hB3Lw5xaXE4cesESpQlZiuTdwdvJC9IrnF/8v1k+Hzq89DHNLWR3UZi++TtNLz2Yc2dC/z4I5CdTbUdtWCMxXHO+5u7HMaIj49PCQgIoA/nVig+Pr5jQECAl6F9VBPSRhSWFyIxKxGXMy/jr9t/AQCcbJ0QlxaHc2nnKvsjWIgs4O/sj8c8HsPhm4fNVt6s4iy888c7kEllkFnKIJPK0M6yXeXjzJKWt+6htYU1dkzeARc7F3MXpeU7dQoYOJACEEJaOApCWjHOOW7m3sRX577C2hNrq+2XiCTwd/bH0z5PI8gtCEGuQZC7yGFlYYWbuTfRfUN3M5RakFeWh38e/We9jvk792/0/bxvZaAis5ShnVQIXGwkNrhfbN4vWQq1AsdvHcezvs+atRwt2s6dQNeuQh+QqVPNXRpCyEOiIKSFKlWU4sr9K0jITECpshTzAufhRu6NyuYUbQ1HXpnh/k/2lvZIX5wOK4mVwf1e7b1gI7FBicI8TTI9O/TE5fDLKKwoRGF5IQrKCyofF1YU4mr2Vaz4bUWVY6wsrODZ3hOF5YXIKsnCjdwblflLFCWAGVseB3sMRvT4aPg7+5uvEC3Ix7dv43+5uTjQp8+DxPv3ged05jk8cACQSISOqFQjQkiLREFIM1emLEPy/WQkZCUgITNB+JmVgBs5NypXU5WIJHj98OvIL88HAEjFUsid5ZjqOxVBbkHo69IXT2x9AuWqB5M55ZfnI688D50khvsmiJgIE7wnICUvpdFfoyEe9h6QiCVwtHaEo3X16bZT81KxL3lftWO+n/J9jedMzUvF1B+a9tuzezt3TPWdiql+U5u0Y29Lt+jGjeqJf/1V9fnZs0BxMU1CRkgLRkFIM1GhqsDV7KuVgcblzMtIyErA9ZzrVRYzM0ShVuCpXk/hcY/HEeQWBH9nf0jFVSfk6+3UGxfSL1RJS8hMqLWD5O5ndzf8BTUyz/aeOD3XwORUJj6GNCMnTlRPe+yxpi8HIcRkKAhpYgqVAtdzrlfWbFzOuoyEzARcy7kGpVrZ4POG9QvDUK+hNe7v49IHheWF8HP2g5+TsFHTAGlRKAghpNWhIKSRqNQq3Mi9IdRo6DSjJN9PhkJt+snyEjITag1Ctj61lZoDSMs2YQLAedVmGQpCiAkxxoLmzp2b8eWXX94BgJUrV7oUFRWJo6Ki7hlz/LVr16SzZ8/2TEtLkzLGEBMTc61Xr14VSUlJ0qlTp3bLz8+38Pf3L9mzZ8/fVlZWVXqp7dy50z4hIcF6zZo16TWdv6n169fP5/z580mNeQ0KQkzkyM0jOH33dGUNR9L9pCp9MBpDl3ZdKms2Al1rXxuDAhDS7JWUAEeOAKmpgL9eLV12NtCjB+DsLDz//nshrbv5RnCR1kcqlfKYmBiHtLS0dFdX13pXTc+aNavr8uXL0yZPnlyQn58vEomEyQgjIiLcFyxYkPHSSy/lzpw502P9+vUd9VfRnTVrVj6A/Id9Ddrp4U2hsQMQgIIQk/n49Mc4cPVAo5zbTeZWpQnFz9kPvk6+aGfZrlGuR0iTSU0FfvlFGOny22/CSrjW1kBMjLB/yRIhMImPF2pB7OyAGTOAp58GRLTqRKsWEeGGjz5yNdn5Fi1KQx01GmKxmIeGhmatWbPGZePGjXfrc/q4uDgrlUqFyZMnFwCAvb29GgDUajVOnjwp27dv300AmDNnTnZkZKSbfhCyYcOGDrGxsbbbt2+/9cwzz3jJZDJVfHy8bVZWluTtt9++ExYWlgsAb731lst3333XgTGG4cOH50dHR98NDg7uFRwcXHT69Gm7cePG5b388svZYWFhnnfv3pUCQFRU1K1Ro0YVHz161CYiIsKjrKxMZGVlpd66devfAQEB5bGxsVZhYWFdFQoFU6vV2LNnzw25XF5uY2PTr6Sk5PyBAwdkq1evdnN0dFQkJydby+Xykr179/4tEomwe/du+zfeeMPd0dFRKZfLS1JTUy2PHj163dj7RkGICdzOv420wrSHPo+LrYsQZDj5VdZw+Dr5wsHawQSlJKQZUKmEicYOHBC2y5er5yktffB440ZhJdzVq4Fhw4BHHhGG5bZySmU+RCIrlJQkwcbGFyJR63/NzcXSpUsz5XK5X2RkZJVmkboWsEtMTLRq166datSoUd1v375t+cQTTxR8+umnd7KysixkMplKWzvh5eVVkZGRIdU/j76MjAxJbGxs0oULF6wmT57cIywsLPe7775r98svvzjExcUlyWQydUZGhlibPy8vT3z27NlkAAgJCekaERGRMXr06KJr165JR48e3fPmzZsJAQEBZWfOnEmSSCTYu3ev7PXXX3c/dOjQjY0bNzq9+uqrGeHh4TllZWVMqaxeCXTlyhXrCxcu3PTy8lIEBQX5HD582G7w4MHFCxcu9Pz999+TfHx8KkJCQrrW935TEGIilzIvGZ3XycapSgdR7eMONh0asYSEmFlCgjDPx4ULdefV4Lm5YDY2jVio5kepzMeffzpAKu2Eioo0ODvPgIvL8+jQYay5i9YmODo6qqdMmZK9du1aZ2tr68qhieHh4Tnh4eE5NR2nVCpZbGys3enTpxN79uxZMWHChO4bN27sOG3atGqTNTHG6py1aOLEiXlisRhBQUFl2dnZEgA4fPhwu+eee+6+TCZTA8JCe9r8M2bMqCzbiRMn2l27ds1a+7yoqEicm5srysnJEU+bNq1rSkqKFWOMKxQKBgCPPvpo8Ycffuh6584d6fTp03Plcnm1vgRyuby4e/fuCgDw8/MruXHjhlQmk6m6dOlS7uPjUwEA06dPz/nqq6+MXm8HoCDEJNzbuePPsD8R/FVwlXRHa8dqgYafsx+cbZ3NVFJCzOT2bWD4cGH123pQW1tDXHe2VqWoKB4AR0WFULuamfktCgvjKAhpQsuXL88IDAz0nT59euU0y3XVhHh4eFT07t271NfXtwIAJk6cmHvq1Cm7hQsX3i8sLBRr+2qkpKRInZ2d6xydoNtxVbvGG+e8xv592sBEmy82NvaKnZ1dlWBn7ty5HkOGDCk8fPjwjeTkZOmwYcN6AcArr7ySM3jw4OKffvrJfuzYsd7R0dEpEydOLNQ91tLSsvJcYrEYSqXSJGvPURBiAowx+Dv7Y17gvCr9NlxsXahDKCFFRUBIiHEBiLMzMG5c5VMV5xC3sb+hwsJz1dLs7PqZoSRtl4uLiyokJCR3165dHWfMmJEN1F0TMmTIkOL8/HzxvXv3LNzc3JRHjx5tFxQUVCwSiTBw4MDCLVu2OLz00ku5mzdv7jBhwgTDU1nXYcyYMQXvvvuu27x583K0zTG6tSFajz/+eMF7773n/Pbbb2cAwF9//WU9aNCg0oKCArG7u3sFAHzxxRcdtfkTExOlvXv3Lvfz88u8efOm5YULF6z1gxBDAgICym7fvm2ZnJws7dWrV8Xu3burzyxZBwpCTMRaYo1NIZvMXQxCmheVCpg1S+hYWpPAQGH47fjxQP/+QofT338XDm8Bq3ybWlHR+WppMlnto99apaioe3V1JG1MK1asSN+2bZvRTQsWFhZYu3btnaFDh3oDgFwuL1m0aNF9AFi3bt2dadOmdX/nnXc6+/n5lSxcuLBBC1k9++yzBefOnbPp27dvb4lEwkeMGJH/ySefVOtAu2nTpttz58718Pb29lWpVGzAgAGFgwYNurVs2bL0uXPndt2wYUOnwYMHF2jz79ixw/H777/vYGFhwZ2cnBT//ve/jbrvdnZ2PCoqKnXMmDE9HR0dlf369Suu72sySXVKY+vfvz+PjY01dzEIIfX1+uvABx9UT3d1FTqbjhsHuLlV2cU5h+jYMQDAGEdHfNKzJ7pbW1c/Ryt19qwcxcVVO+z26fNfODqOrPe5GGNxnPP+pipbY4qPj08JCAgw7yqTpN7y8/NF9vb2arVajdDQUI+ePXuWrVq1qsoy5/Hx8R0DAgK8DB1PNSGEkMbx9deGAxBra2D/fiAoyOBh2YoHzeUHc3Lw+Pnz6G5lhT8DW39tgEpViuLiK9XSqTmGNFcff/xxx2+//bajQqFgfn5+JREREfUKJCkIIYSYVkmJUMvx4YeG93/zTY0BCAAUqqo2cadXVEDaRvqFFBdfAlD19VtadoFU2tHwAYSY2apVqzL1az7qg4IQQojpxMQA8+cDKSmG969ZI0w0VosulpZVnm/y9oaHlZWJCti8GeoPYmfX+muASNtFQQgh5OHduwcsXAj88EPNeUJDgTfeqPNUFnozoQ5zcGgzfUIMjYyRyagphrReNO8xIaThVCrgk08AH5/aA5Bhw4BNm4AGNKtYtJGmGAAoKjI0PJdqQkjrVWcQwhgTM8YW1ffEjLEujLGjjLErjLEExthCTXokY+wuY+yCZhtX17kIIc3QuXPAwIHA//0fUFjDlAKWlsC//gX8+qvw2IAd6emIuF7zUhNtJQhRqxUoKqo+8zJ1SiWtWZ1BCOdcBeCpBpxbCWAx57w3gIEA5jPGfDX7PuKc99VsMQ04NyHEXAoLgUWLhHVcahs6P3w4cOkSsHIlIDW8VIaac6xMScEunYnM9KcNkDTTIESZr4Qit86JL41WUnIFnFedLVsicYKlZWeTXYPUjjEWNG/ePHft85UrV7pERES41XaM1v79+2U+Pj6+2s3S0jJwx44d7QEgKSlJ2qdPHx9PT0//8ePHdysrK2ueb2ozMLY55gRj7BPG2GDGWKB2q+0Aznka5/yc5nEhgCsA6K+JkJZs717A1xf4+GNArTacx9lZGAFz+DDQs2etpzuRn4+UsjJU6AQe+hOUNdeakKTZSUicmmiy8xnulNqPZl1uQlKplMfExDikpaXVu79kSEhIYVJSUmJSUlLisWPHkq2srNSTJk0qAICIiAj3BQsWZKSmpl62t7dXrl+/noY7aRgbhAwC4AdgNYB1mq2G8XfVMca8APQDcFqTtIAxdpExtpkxZnCJWMbYS4yxWMZYbFZWlqEshJCmcusW8NRTwOTJwJ07NeebNw+4ckWYJdWID8/tmhqQcp2ApqKF1IQUnitEydUS053PYKdU6g/SlMRiMQ8NDc1as2aNy8OcZ8eOHQ5DhgzJl8lkarVajZMnT8rCwsJyAWDOnDnZ+/fvb2+aErd8RkV7nPMnG3oBxpgdgD0AXuOcFzDGPgPwNgCu+bkOwBwD19wEYBMgzJja0OsTQkzg1Cng559r3u/vD3z+OfDYY0afskylwveZwvQCuoGHogXUhKhKVSi/VQ4mZbUuKlYfNdWEtEVzkpK6XC4uNunyyf62tiWbfXxu15Vv6dKlmXK53C8yMjJdN72uBex003744QfHhQsXZgBARkaGhUwmU0kkEm3+ioyMDMPtk22QUUEIY8wewCoAT2iSjgFYzTnPr+M4CYQAZCfn/EcA4Jxn6Oz/EsCBBpSbENKU+vcHOnQAsrOrpltbA6tWARERgOafrLH2Z2cjX6XC4/b2+DM/H2rOIWIMLycnV8k3+fJlvObujjEdOjzsqzCZ0uulAABewaHMUULSoX6vXR/napojpJlwdHRUT5kyJXvt2rXO1tbWlVV0dS1gp5WamipJTk62fvrppwuA6n2cAIAxRl+sNYxt99oM4DKAqZrnzwPYAqDGWYeY8NXgawBXOOdROumunPM0zdPJmvMSQpojzoGvvhKCDM6FQEM7rfrYscCnnwJduzbo1DsyMuAmlWKMoyP+zM9HhVoNxhh26zW/HsrNxQyXh6odN7mS5AfNMBXpFQ8dhJSW3oBKVVQlTSxuB2vrbg913pbKmBqLxrR8+fKMwMBA3+nTp1dOQW5sTcj27dsdxowZk2dpackBoFOnTsrCwkKxQqGARCJBSkqK1NnZ2XQ9mls4Y/uEdOecr+Kc39Rs/wJQ11/HYxCClWF6w3HfZ4xdYoxdBPAkgHoP/yWENIF794SVbV96CQgOBhIShOnYXV2B774DfvmlwQFIVkUFfs3JwUwXF1hrJicr5xy/6Ne0aMjE4ga/jMZQerW08nF5WnktOY2Tnr6tWpqdXV8wRlM5mYOLi4sqJCQkd9euXZUdSMPDw3O0HU91N0NNMTNnzqysMRGJRBg4cGDhli1bHABg8+bNHSZMmJDXdK+meTP2HV7KGHtc+4Qx9hiA0lryg3P+J+eccc776A7H5Zw/zzmXa9In6tSKEELMpawM2LFDqO3gHNi1S+jn8fvvwMaNwkgXT09g8WKh4+mUKQ2aeEzrP5mZUHKOUBeXynVhKtRqxNYw30ignV2Dr2UKnHNcnX8VheeE8pVcLan871meVgKFIrfB505L24Jbt96tlt5W+4M0FytWrEjPy8ur1yiZ5ORkaVpamnTcuHFV3sjr1q27s3Hjxk4eHh7+ubm5FgsXLqTVgjWMvcGvANiu6RsCALkAXmicIhFCmoxCARw8CCxZAly9Kjz/9Vdh9tOBA4Ft2wBv7wf5JRLA3r7m8xlpR0YGAmxtIbezw8l8oWtZjkKBOANBiJNEAi8zT9uuzFfiXvQ9SDpKIAuUoTS5FLJAGdWTE2AAACAASURBVApjC3FftQU3Tn+MQYPSIRLVr1kmO/tXJCfPM7ivU6dQUxSd1ENJSUllx5wuXbooS0tLq3fUqUWvXr0qMjMzL+qn+/r6Vly6dKn68sik7iCECfWBvTjnAYyxdgDAOS9o9JIRQhpXebnQtJKr8y1+7lzAwgJYu1YITBqhGSS5pARnCwvxYffu+C4zE2/+/TcAwOfsWYP5D/XpY/Iy1Je6VOifqMgUmvJLrpbAaYoTiq8Uo4xfhVKZA4Uis14TixUUnEVCwrPQXzUXALp0WUrDc0mbYMyMqWoACzSPCygAIaSVsLSsWssBCE0xY8YAy5Y1SgACCNO0iwDIbW0x68oVZCuVteb3tbVtlHLUh7pECEIqsiqgyFZAmaOETS8bWLpaQqkWOtKWlxvfslxaegOXLo2HWl19nhFn55no1m2taQpOSDNnbJ+Qw4yxJZr1YBy1W6OWjBDSMHfuANu3Ay+8AMTFVd2XkyPM97F0qdDccuZM9eMPHQI0tROmpuYcOzIyMNLBAVG3b0NpYPiiPkuR+TtnqkqF2gpFlqJyZIyNtw2knaRQioUgpKLC+CDk9u0PoVBUn4SxXbtH4eOzhTqkkjbD2D4h2snE5uukcdQ9QoYQ0tju3weOHgV++w04cgS4du3BPmdnIDkZOH5c2BIShHSpVFj7Zdo04D//eZB/wADg668bPOqlLsfz83GrvBzPubhgza1bjXKNxqCtCVFkKipnSbX2tobUVQq1pTCipz5BSI8eG6BWlyM9fUtlmkhkgz59DkIkonmsSNthbJ+Q5zjnJ5qgPISQuhQWAn/88SDoiI+vOe+HmtUVZDJg0CBgxgxg8GAhALG2FkbFHDsmBB/PPCPsb8ThsDvS02HDGP6Xa3g0iYQxiBlDWU3r0piJtk9IRVYFSq+WglkwWHW1gtRVCm4rvJb6BCEikQS9en0NS0t3pKa+DQDw8voXLCzamb7whDRjdQYhnHM1Y+xDAI82QXkIIfrUauD8eeDAAaGp5MwZQFW9M6NBFhZCkBEcLDzWZ2UF3L37UMNtjVWqUuH7rCwEt2uH3/MNT7Z8OCAAxSoVxl+qvqS9OalKhPutzFGiOLEYVt2tILIQQeLGgHZCN7n69AkBAMYYunZdjby8P1BQcApubi+ZvNyENHfGNjz+lzH2DKPlHAlpGsXFwL59woJw7u7CtOmRkcDJk8YHIACgVAq1HYYCEK0m+rPen52NApUKKWVl1fb529jAijH8kJWFimZWCwIABX9p+uNzIOdgDlQFKqhKVRC7PRhSXJ+aEC2VqhRFRRfg7DyFakGaAcZY0Lx589y1z1euXOkSERHhZsyx+/fvl/n4+PhqN0tLy8AdO3a0B4CkpCRpnz59fDw9Pf3Hjx/fraysrNof3c6dO+3ffPPNajOymlO/fv18GvsaxgYhEQC+A1DOGCtgjBUyxmiUDCGmlJIiTIM+dqywTsukScKU6Wn1/HBjDAgKEjqf/vqr0AG1Gdieng4HsRgp5dVnGF3bvTvGdeiAPVlZKDeis2pTyvoxC6nvpFY+5+UcFWkV4EoOkcuDf4MNCULu398LlSofnTqFmaSs5OFIpVIeExPjkJaWVq9JygAgJCSkUDuL6rFjx5KtrKzUkyZNKgCAiIgI9wULFmSkpqZetre3V65fv76j/vGzZs3KX7NmTXr1M9ePQmG6GeHPnz+fZLKT1cDYG20PYBaArpzz1YwxDwCujVcsQtoApVJYnfbAAWEK9MsPsYxS797AsGHA8OHAkCGAY/MavJapmabdzkB/k8ft7THO0REFSiV+vH8fx/Ka14zWaV/VElw45gJFgETlZTAIyc09AmvrHrCy8jR4eHr6FlhaeqJ9+6EmKm3rEXH9uttHd+6Y7HNmkbt7WlSPHvdqyyMWi3loaGjWmjVrXDZu3Hi3odfasWOHw5AhQ/JlMplarVbj5MmTsn379t0EgDlz5mRHRka6LVu2rMrwqA0bNnSIjY213b59+61nnnnGSyaTqeLj422zsrIkb7/99p2wsLBcAHjrrbdcvvvuuw6MMQwfPjw/Ojr6bnBwcK/g4OCi06dP240bNy7v5Zdfzg4LC/O8e/euFACioqJujRo1qvjo0aM2ERERHmVlZSIrKyv11q1b/w4ICCiPjY21CgsL66pQKJharcaePXtuyOXychsbm34lJSXnDxw4IFu9erWbo6OjIjk52Voul5fs3bv3b5FIhN27d9u/8cYb7o6Ojkq5XF6SmppqefTo0evG3itjg5BPAagB/H97dx7eVJn+j//9ZG3SpEu67y1QKC2l0CI7w8ggoAKKioALAgIC41yMjKgM81EGEWFGUNEPX0UHBT+iuA3OKC514aeCFtkKFFqW2kKhTbd0ydYs5/n9kbS0Tfc2TZf7dV25enpyzsn9FJreuc+zTAGwEUA1HKvj3tTWFyKEwDEx2FdfORKPL75wDJntiJgYR8IxZYrjEdazPxO8X1wMAUBVE7eSno+LA2MMMwMCIGcMHxQXd3+ALTBfcb19VIv7OpIQmX4ojJJ0cM5Re9e6quoozpyZDYnEF8OHfwGVKqXhdc1XodN9g5iY/6EhuT3I2rVri5OTk5M2bNjQoCrR1gXsAMf6MatXr9YCgFarlajVarvUucp0bGysRavVtjoESqvVSo8dO5Z96tQprzlz5gxavHix7oMPPvD5/PPP/Y8fP56tVqsFrVZbl9VXVFSIf/311xwAmDVrVtyaNWu006dP11+8eFE2ffr0+Nzc3KyUlBTz0aNHs6VSKQ4cOKB+4oknIr/66qvLr7zyStCqVau0K1euLDebzczWxNw958+fV5w6dSo3NjbWmpaWlpCenq6aNGmSYfXq1TGHDh3KTkhIsMyaNavdw+ramoSM4ZynMsZOAgDnXMcYo3FkhLTFxYuO/h2ffQb89FP7+nTUksmAm28GZs503K4ZMKDb+nJ0hbeLiiBhzGVekNs1Gkz08wMAqCUSzNBo8Gkzi9h5ir26+X+v2uG54rJYcF8bBMEIsdgbRuOlusnILBYjTp6chGHD/g1//z/UnavV7gXAERq6yM0tIO2h0WiEuXPnlm3ZsiVYoVDUdVBauXJl+cqVK1v91JCfny/NyclR3HXXXVWAY92hxhhjrd5znD17doVYLEZaWpq5rKxMCgDp6ek+DzzwQKlarRYAx0J7tccvWLCgLrbDhw/7XLx4sW6tA71eL9bpdKLy8nLxvHnz4vLy8rwYY9xqtTIAGDdunOGFF14IKygokM2fP1+XnJzscs80OTnZMHDgQCsAJCUlGS9fvixTq9X2qKiomoSEBAsAzJ8/v/zNN98Maq1t9bU1CbEyxsRwzA0CxlgQHJUR4mnnz99YWt0TEhIcfyCb01R8HTmnO3V1m3buBF56qf1xhIY6VrGdOROYOhXw8CJuHXXeYMBJvd5lPwOweUDDqYbuCQrqeUmI3jUJGfTqIIi8RLBaiwGLDLwkABgA2O0G2O0GnD49A1brjTXK7PZqnD59K5KTP4dGcws45ygqeht+fr+HQuGeOVlIx61bt06bmpqaOH/+/Lp/xLZWQvbu3es/Y8aMCrlczgEgNDTUVl1dLbZarZBKpcjLy5MFBwe3+gbn5eVVl6jUJjL1K22N1SYmtccdO3bsvEqlapDsLF26NHry5MnV6enpl3NycmRTpkwZAgArVqwonzRpkuHf//6376233jp4586debNnz26wkFNtewBALBbDZrOxphKs9mprErIDwL8BBDPGngNwD4C/dfrVSef89BMwZ45jsipPyc1teWKr225zdLjs7DndqavbNHNm25OQtDTH8TNnAqmpQA+YLbSzXr/e9G34BcHBGN4osZoVGAgpY7D2oM6pTVVCwh4Og0gqgsVSDGbwh+D4oAq73QBBMDY5Hbu3dxJ8fMYAACorf4LJdAkxMfQ22hOFhITYZ82apdu3b1/gggULyoC2V0I++ugjzaZNm+r6k4hEIowdO7b6rbfe8l++fLlu9+7dATNnzuxQx6cZM2ZUPffcc+HLli0rr70dU78aUmvixIlVW7duDX722We1AHDkyBHF+PHjTVVVVeLIyEgLALz++ut1nWPPnTsnGzp0aE1SUlJxbm6u/NSpU4rGSUhTUlJSzFevXpXn5OTIhgwZYtm/f3+7O6O1KQnhnL/LGDsO4A9wfIC5k3NOKwJ62htveDYBAYAHHwR8fByrqzb1aOpT7c6dQEhI8+cYXd/Ae63CQuDECUcy0dTQU6USmDbNkXTcdluP79vRXgLn2F3k2uFfwhg2NpG0+UokmObvj8872lemiwk1Ari1UUIkAkRyR3JotRZDVBMAW4njrdRuN0ClGobU1J9x+vStMBodb5NyeQySkw/WDcMtKnobYrEKQUH3dF9jepntgwZdb60jqTutX7++aM+ePe26tZCTkyMrLCyU3XbbbQ3+gG/btq1g3rx5Azdt2hSRlJRkXL16dYfeuO+5556qEydOKEeMGDFUKpXyqVOnVr766qsuHWh37dp1denSpdGDBw9OtNvtbMyYMdXjx4+/8uSTTxYtXbo0bseOHaGTJk2qG9r1zjvvaD788MMAiUTCg4KCrM8//3ybfu4qlYpv3749f8aMGfEajcY2cuRIQ3vb1CXlFHcbNWoUP3bsmKfD6HlKShyflgsKPBfDyJGOGTat1qYfpaVN//HtyW65BfDza5gYyWQ3tt94A2g82dYzzzhun9QeYzIBn3wCfPONo/3+/jdWq42JAWbNciQekyc7Jgzroz7UanHvedfPKyvDw7Gz8eJ5Tod0Ojx/5Qq+dv68+O9/784QW2QpteBI0JEG+yR+EkzUTQQAHDuWBmuOGrb/uw32J59EauovddUOq7UcZ8/eAYPhHEaOPAxvb8eUC3a7AUeOhCIo6F4kJPzLrfEzxo5zzke59UW6SGZmZl5KSoqHP1WR9qqsrBT5+voKgiBg4cKF0fHx8eZnnnmmQe/yzMzMwJSUlNimzm/3WGjSgwQFtTwJVXf4+OOWb13Exbneujh/3jEBl9UKWCyuicu0aUAzJfxuceUKcPVq84lVU5Wav//ddV9sLPDXvwL33+/4GWRmOhKPxMRe1am0M/7WxG01hUiE/4lpesgqAPze3x+j1Gqof/rJjZG1TVP9QcTqG8OMrdZiSERxqNHeuB1TSyrVYPjwdJhMl+oSEAAoKfkIdrueOqSSPuGll14KfO+99wKtVitLSkoyrlmzpl2JJCUhvV1CgmNdEE9xDjtrVlPxqVQtd7IcPtwxWZenHDzoSJKac+utjqnOa6uInAPvvQcEBt5IVICGI1gSEoAZM9wbdw9zqroaF0wml/1/joxEmFze4rniHpKkNdUfpDYJ4ZzDYimGUhYMg8lRzbLbGyaoYrEXVKphDfYVFb0NhWIQfH0nuilqQrrPM888U9y48tEelIT0dl984ekIWtaR+Ppim/qhFRcuuOzzk0iwNiqq1XN7dBKiciQhBkMWOLdArgwDzI4kRBBaviVuMuWiouIQ4uI2NTvKgZD+hJIQQkiXO6vXI6PatXP9U9HR8G+tegZHx9WeoKXbMRcvrgQA6JR7gNnJAACrtenVgWsVFe0BwBASsrBrAyWkl6IkhBDS5QKlUogA+EskKHPOvhgmk+FPERFtOl/UU5KQJiohErUEgmBDdfVxAEANvwzMuQwAMJt/a/ZanAsoKtoDf/+p8PJqvRpESH/Q+ychIIT0OPtLSiAA+G7ECLydkIAYuRxPx8RA2cTaMT2Zrdp1+mqxWgy9/gQEwbW/i1js2+y1KioOoaYmnxarI6QeSkIIIV1ub1ERUlUqDFep8FBoKHLGjMHDvXAOlOb6hFRU/H+uB3OAc9fEpFZR0VsQi30RGHhnV4ZIuhBjLG3ZsmV1vdKffvrpkDVr1oS39fwVK1ZEDho0KGnAgAFJixYtihKc0xP8+OOPysGDBydGR0cPq7+fUBJCCOli5wwGnNDr8WBISN0+uUgEaQdmf/Xy8IyxzfUJaTIJsUsaDNGtz2arQknJxwgOng+xWNHkMcTzZDIZP3jwoH9hYWG7uyqkp6d7Hz16VJWdnZ114cKFrFOnTnkfPHhQDQCrVq2K2blzZ35eXt7Z3Nxcr48++sin66PvnSgJIYR0qXe0WogBLKiXhHTEp8OGIesmzy7U3VQlRKQGKit/dD24RtlsElJc/AEEwYSwMLoV05OJxWK+cOHCks2bN7f7Py9jDDU1NcxsNjOTySSy2WwsPDzcmp+fL9Xr9aKpU6caRCIR7r///rIDBw74uyP+3shtHVMZY1EA9gIIhWOxu12c85frPf84gH8CCOKc0yx5hPQBAuf4P60W0zQahLS0CGAbzA4MbP0gN2sqCbEH5cBur2qwj1m8wQ3ezSYhRUVvQakcCrV6tFvi7Guyl2RHGc4alF15Te9h3saE3QlXWztu7dq1xcnJyUkbNmxosN5AawvYTZ061TBhwoTqsLCwFABYtGhRSWpqqvmHH35QhoWF1S1YFxMTYyksLGx9iFg/4c7RMTYAf+Gcn2CMqQEcZ4ylc87POROUWwBccePrE0K6iZ1ziAAcqqhAQU0N/tloddzeqqnbMTUBR132ySvSYDZcbTIJMRpzUFV1BAMGbKW5QXoBjUYjzJ07t2zLli3BCoWirvNGawvYnT17Vn7hwgWvgoKC0wAwefLkwV988YVKqVS6dACh/wc3uC0J4ZwXAih0blczxs4DiABwDsCLAJ4A8Km7Xp8Q0n025+cjXaeDSiyGWizGHT2gitEVmhodY/D5xmWf0jYOZlMJ7DV6l+ccc4OIERLyoDtC7JPaUrFwp3Xr1mlTU1MT58+fX1elb60Ssn//fr+bbrrJ4OvrKwDA1KlTKw8fPuy9bNmy8vqVj/z8fFloaKi18XX6q27pE8IYiwUwEkAGY2w2gGuc88xWzlnOGDvGGDtWUlLSDVESQjoivbwcG/Ly8GNlJb4oL4efRIKLTUzX3hu53I7xqYRR+ovLcb6yqYDZC7ZGSQjndhQV7YVGMwNyee8bHdRfhYSE2GfNmqXbt29fXTa9cuXK8uzs7HONH19++WUuAERHR1sOHz6stlqtqKmpYYcPH1YnJiaaY2JirN7e3sK3337rLQgC3n333YA77rijwnOt61ncnoQwxlQAPgbwZzhu0awH8HRr53HOd3HOR3HORwUFtWs1ZUJIN8k3m7Hg3DnUrzdfralB6rFjKDCbPRZXV3FJQsb+ArCG++TyGPgEpgEmBWyWhklIeXk6LJZr1CG1F1q/fn1RRUVFm+8WLF68WBcbG1szZMiQpMTExMSkpCTjfffdVwkAO3fuzF+xYkVsTEzMsNjY2Jq5c+dWtna9/sKtM6YyxqRwJCDvcs4/YYwlA4gDkOm8JxYJ4ARjbDTnvKiFSxFCeqBn8/LqZkSt7/GoKER6eXkgoq7l0idkwmGXYwID74RckANmL9hthQ2eKyp6GxKJBgEBM90ZJukiRqPxZO12VFSUzWQynWzp+PokEgn27duX39Rzv/vd74wXL17M6ooY+xp3jo5hAP4F4DznfDsAcM7PAAiud0wegFE0OoaQ3unV+HjobDZ8UnrjV3iKnx82xcV5MKqu06ASIjcDo107pQYG3gmZWAaYvSDwGx1TrVYdSksPIDx8OUSillcNJqS/cuftmAkAHgQwhTF2yvm4zY2vRwjpZmLGkG82w1skgowxRMnleD8xERIPTzLWVRp0TE07DnjVNHheItHA13cixGoxAm6JcCQqTsXF74HzGpqmnZAWuHN0zE8AWhyHxDmPddfrE0Lcb1N+Po7r9fgoKQlRcjlEAII6OT9IT9LgdszEn1yeDwiYBZHI8TbqPSgQZVcM4JyDMYaiorfh7T0cKtWI7gqXkF6HVtElhHTI0aoqPJefjwdDQnB3H+w8LlgF8Bru+EZkB8YfcTmm/jowYrE3ADs4t8BovITq6l8xcOCLNCcEIS2gJISQDrIIAsqsVpRZrSi1WlFms6G0dttqRbhMhlURERAzBhljLn+Mii0WLMrObrAvSCrFnqFDm33Nps7pTrXxGe12PHj+PMLlcrwSH++xeNypQX+QYWcB34azpIpECmg00+p97+04z25AYeFbYEyCkJD7uyVWQnorSkIIAVDTOKFwfq2fXNTuK7ZYUGazQW93nU2zPgZgbW4uAEAMwFsshlIshrdIBG+xGBLGcELfcEinWixGVG4uvMXiuofSeby3WIxqmw1flDc7aaPbRckdHSyfuHwZF0wmfJuSAl9J33wbaZCENHErxt9/GsTiGzOLOyohgM1WCa32/xAQMBMyWd+rEBHSlfrmuwchAAx2OzKqqhomFM1ULapbSSg6wkcsxlPR0bA7Y6l9GAUBBrsdZVbXSRP1djs2X7kC3uXRdJ2vy8vxv9ev48+RkZji33fX4brRH4Q3OzS3vtokpKTkY1itWuqQ2gsxxtKWLl2qfeONNwoA4Omnnw7R6/Xi7du3X2/L+StWrIj85ptvfAVBwO9+97uq3bt3XxWJRPjxxx+VDz/8cKzZbBZNmTKlsnZ/ff/4xz+ClEql8Oijj5a5oWntlpeXJ12xYkVU7WRs7kJJCOkVjHY7fq6qapBIyBjDUzExTR5vstvxS1UVpma2ODGvW7EW4gOAK2YzYn5pOPtmpFyO/LFjYXYmKgbnV6Nz+zeTCYtzctwderMKLRbck5WFoUolNveRYbjNsRvs8J/hj4orJ8DDCxs9K3KZ+6M2Cbl+fSek0mBoNLd2U6Skq8hkMn7w4EH/wsLCorCwMNcJcFqQnp7uffToUVV2dnYWAIwaNSrh4MGD6pkzZ1avWrUqZufOnflTpkwx/P73v4//6KOPfO69994G9/eeeOKJLpka3GazQdIF1cnY2FiruxMQgJIQ0o1Mzk//TVUiAODp2Nhmz9VaLC4Jha9YDLMgQGu1QmuxoNhiqdt2R2WjvSpsNlgFAdJ2DldljEEhFkMhFqPxCixxHp4ATMYYbtVo8ExsLBRisUdj6SwucFQcqkDhvwoR8ccI+I73hWAVUPppKa7/v+uo+K4CTMKgeO44jI3O9fWdBJms4b9ObZ8Qs/k3REaugUhEC6V2xqU1l8ILXizosrnuIx+LLBy0fVCLFQ2xWMwXLlxYsnnz5pBXXnnlWnuuzxhDTU0NM5vNjHPObDYbCw8Pt+bn50v1er1o6tSpBgC4//77yw4cOODfOAlZs2ZNuEqlsm/cuFE7evToIWlpafqffvrJp7q6Wvzaa6/lzZgxQ2+z2bBq1arIQ4cO+QDAQw89VLp+/friiIiI5AULFpR+//33Po888kjxhAkTjCtWrIguLy+XeHl5CW+++Wb+yJEjzfv27fPdsmVLmNVqFfn7+9v279+fGxUVZfv8889Vf/nLX6Jr23HkyJHs4uJiycyZM+MvXryYtWPHjoDPPvvMz2Qyia5cuSK/9dZbK1577bUCAHjxxRcDX3755dDg4GDrgAEDzDKZjO/du7fNi9NSEkI6xFg/oWih/0T9baPgsphkHbVYjHiFAlpnIlFssTTYLqqpcTmn0m7H3/PzESCRIEQmQ4hMhjSVqm47UCrFIxcuuO1nwAAESKUIkEgQKJUiUCpFQKOvLd1WCZJK8XlycoN9Xq0kLE2d0528RKJefwum5noNCncXomh3Ecy/Oeb14FaO8i/KUfhmISxFFsij5Yh7Lg6hS0JxpuAxoNG6dI1vxQA3KiEA6FZML7Z27dri5OTkpA0bNjSYxbu1BeymTp1qmDBhQnVYWFgKACxatKgkNTXV/MMPPyjDwsLq7r3GxMRY6i9o1xybzcbOnDlzfv/+/b4bN24MnzFjxoVt27YF5efny7Oyss5JpVJotdq6TwJeXl7C8ePHcwBg3Lhxg3ft2pWfnJxc891333mvXLky+pdffrlwyy236OfPn58tEomwffv2wI0bN4a+8cYbBdu2bQvdsWNH/rRp0wyVlZUipVIpFBcXN4jn3LlzyszMzHMKhUIYNGjQsMcff1wrkUjwwgsvhJ04ceKcn5+fMH78+MFJSUntWjiKkhACwLEUe6Ze36b+E6VWK0wtJBQdUW23477z5wEAEsYQLJUiWCZDiFSKRKUSQVIpXr52DTbe8M+6bsIE+Emb/31+KjcXuiamFW9MBGdCUZtENJFYNE4y/CQSiDsx/FIhFuO2gAC3n0Maqvi+Ann/k9dgX8mHjkp4wMwAhK8Ih2aGBkzMYDbnQ5/tOnN3YOAdLvtqkxC1ehRUqmFdHzjpFhqNRpg7d27Zli1bghUKRd0b3cqVK8tXrlzZbK/ws2fPyi9cuOBVUFBwGgAmT548+IsvvlAplUqXN8u2DNueO3euDgDGjx9vWLt2rQwAvvvuO58VK1aUSJ3veSEhIXUl34ULF+oAoLKyUnTy5EnV3LlzB9Y+Z7FYGAD89ttvsjvvvDOypKREarFYRFFRUTUAMHbsWP3jjz8ede+995YvWLBAN3DgQJeYJ06cWBUQEGAHgEGDBpkvX74sLy4ulowZM6a6No45c+boLly40K5yLSUhBAAgcI6048c9GsOPI0ZgqLc3/CUSiJr4JX2vuBjXLZYG+ypsthaTkBkaDUyCcCOJcCYXjRMLv2Zek/Q9PhN8IPISQTA3fJ+Nez4OMU817MNTWvqpy/ne3ilQKFz7w0ilwQBECAtb3qXxku63bt06bWpqauL8+fPr1iNorRKyf/9+v5tuusng6+srAMDUqVMrDx8+7L1s2bLy+pWP/Px8WWhoqGuv9Ea8vLw44FiTxm63MwC1E+E1WWBVq9UCANjtdqjValt2dva5xsc8+uij0atXry66//77Kz/77DP1xo0bwwFg8+bNRXfeeWflp59+6jt+/PihX3755YXGyZNMJqt7XbFYzK1WK+O8813oKQkhAIB0nQ5eIhHMXVzhaI/aSkRzpms0qLDZGiQR6lY6Cu2ZDQAAIABJREFUYO1LTOzqMEkvVfVrFa5uu4rST0rBra5vnhWHKppIQg64HNfUrRgAkMtDMWbMZXh5Nd8ZmfQOISEh9lmzZun27dsXuGDBgjKg9UpIdHS05a233gqyWq2FgiCww4cPq//0pz9pY2JirN7e3sK3337rffPNNxvefffdgD/+8Y/FzV2nJVOnTq167bXXgm6//fbq2tsx9ashgKOSExkZadm9e7f/kiVLdIIgICMjQzFu3DhTdXW1ODo62goAb7/9dl1JNSsrSz569GjT6NGjTRkZGd5nz571Gj16dOOuUC4mTZpkWLduXVRJSYnYz8/P/umnn/oPHTqUbseQ9jtQWur2BETCWIv9J1pKQABgd0KCW+MjfUPtp7PakrelxILcdbko+lcRJP4SRDwaAd+Jvsi6OwtggP80f4Q9HIbA2Q07mlqtZaio+MHl+s0lIQCgUMR2XUP6uUHbB11vrSOpO61fv75oz549bZ7oZfHixbrvv//eZ8iQIUmMMdx8882V9913XyUA7Ny5M//hhx+OM5vN7Oabb66aO3duZUdieuyxx0ouXLggT0hISJJIJPyhhx4q+etf/+oyqua9997LXbZsWczWrVvDbDYbmzNnTvm4ceNM69evv75gwYKBISEhllGjRhmuXLkiB4B//OMfwUeOHPERiUR88ODBpnvuuafyypUrrfZbiYuLsz722GOFN91009Dg4GDr4MGDTb6+vu0aFdAl5RR3GzVqFD927Jinw+jTjHY7bj51Ckerq9t0vJSxdvWfCJRK4SMW0xTWxK0MWQZcWHkBYcvDELIgBNdfv47f1v8Gu96OyD9HIubpGEjUjs9e13ZeQ8DMAHhFN30Lu6hoL7KzH2qwTy6Pwdixv/Wa/8eMseOc81GejqMtMjMz81JSUmhF9V6msrJS5OvrK1itVkyfPn3QokWLShcuXFhR/5jMzMzAlJSU2KbOp0oIAQAoxWKM9vGBUixutf9EoFQKNSUUpAexG+zIezYPBdsKwG0chrMGXP3HVRjOGOA3xQ/xr8TDO9G7wTkRqyJavGZzt2Lo/z0hN6xduzb8hx9+8KmpqWGTJ0+ueuCBBypaP+sGSkJInb66Bgjp20r/W4qLf7qImvwbw7htOhsEi4DE9xMRdG9QuxMHu92I8vIvXfa3dCuGkP5o165dBZ05n5IQQkivZL5ixqXVl1B6oOkKvmAU4BXr1aHKhU73DQShYf86iUQDX9+JHYqVENK09k3lSAghHiZYBVx54QqODj3abAICAIpBCnBbx/q8eXnFICzsETB2o29eQMAsiET0uY2QrkS/UYSQXkP3rQ6XHrsEwxlDs8cwOUPMuhhEPRkFsVfHppZXqVIQG/s0CgtfR1jYI5BI/KDRTOto2ISQZlASQgjp8QxZBlx+4jLKDzY7TQMAwP8Wf8T/bzyU8cpOv2ZZ2X8BAJGRf4K3d1Knr0cIcUW3YwghPVZNUQ1ylufg1+G/tpiAyEJlSHw/EcO/Gt4lCQjgGB3j5TUQSiVNeNdfMMbSli1bFln7/dNPPx2yZs2a8Laev3Llyoj4+Pik+Pj4pDfeeKNukaXs7GzZ8OHDE2JiYobdfvvtA8xmMw2xcqIkhBDS49gNduRtzEPGoAwUvlEINDePngiI+FMERmePRvC84C4bPmu1lkGn+5aG5PYzMpmMHzx40L+wsLDddwnef/9938zMTOW5c+eyjh8/fv7ll18OLS8vFwHAmjVrIh999FFtfn7+WV9fX9vLL7/ceIHsfouSEEJIj8HtHIX/KkRGfAbynsmDYGhh5eXRaqQdTUP8jnhIfLv2znJh4Zvg3IrQ0EVdel3Ss4nFYr5w4cKSzZs3h7T33KysLK+JEyfqpVIpfHx8hMTEROMnn3ziKwgCfv75Z/XixYt1ALBkyZKy//73v35dH33vRH1CCCE9QvlX5bi89nKLnU4BQB4jx4AtAxB8bzCYqOurFIJgw7VrO+HndzOthush2dlLogyGs11zX83J23uYMSFh99XWjlu7dm1xcnJy0oYNG4rq729tAbuRI0eaNm3aFF5dXa3V6/WiI0eO+AwdOtSs1WolarXaXrvybWxsrEWr1cq6rGG9HCUhhBCP0p/W4/Lay9B9rWvxOLGvGDF/i0HEoxEdHvXSEpMpF4JggdF4HjU1VzBo0Etd/hqk59NoNMLcuXPLtmzZEqxQKOpKca0tYHfXXXdVZWRkKG+66aYEjUZjTU1N1UskEt7U0ijNrYTbH1ESQgjxCFOuCfnP5aPorSKghbdkJmUIXxWO2P+JhTSg1TW1Oiw//1kUFb0NicQfEkkgNJpb3fZapGVtqVi407p167SpqamJ8+fPr5uIprVKCABs3bq1aOvWrUUAMGvWrLjBgwfXhIaG2qqrq8VWqxVSqRR5eXmy4OBga/e1pmejJIQQ0m2sOitKPiyB9h0tKn9qfSHRoHuCEPd8HJSDurQy7xqXtQzFxe8DAGw2R0Xm6NHBSE7+L1SqFLe+Nul5QkJC7LNmzdLt27cvcMGCBWVA65UQm82G0tJScWhoqD0jI0ORnZ2tvOuuu34TiUQYO3Zs9VtvveW/fPly3e7duwNmzpzZrvVV+jJKQgghblfxYwWu7biG0v+Wgte0Xon2GeuDgdsGwne8bzdEBxQW7oYgmBvss9v1UChoPaX+av369UV79uwJauvxFouFTZgwIQEAVCqVfc+ePbm1/UC2bdtWMG/evIGbNm2KSEpKMq5evZpWC3ZyWxLCGIsCsBdAKBwD7HZxzl9mjD0L4A7nvmIAizjn190VByHE8wynDSj5qKTV47zivDBg6wAE3dP+Rec6inM7rl//fy77Q0MXQyx2bwWG9CxGo/Fk7XZUVJTNZDKdbOn4+pRKJb98+XJWU88lJiZazpw5c74rYuxr3DlE1wbgL5zzoQDGAvgjYywRwD8558M55yMAfAbgaTfGQAjxMFuVDXajvcVjJP4SDNw+EKPPj0bw3K6b76MtOLcjMnI1pNKGUzeEh6/sthgI6a/cVgnhnBcCKHRuVzPGzgOI4Jyfq3eYN1rskkYI6emsFVbo0nUInhvcYH/VsSoUvl4I7XtaCAYBYl8x7JUNkxHlUCVCFoYgfHk4pBr3dTptiUgkQ0TEo7h69SUolSFQKAaCczuUykEeiYeQ/qRb+oQwxmIBjASQ4fz+OQALAVQCuLmZc5YDWA4A0dHR3REmIaSNBKuA8i/Lod2rrevn4Z3lDXm0HMX7inH99evQn9BDpBQheH4wwh8JhznfjHP3noM0WIrgBcEIfTAUqlRVj5iRtKzsIGpq8pCY+AGCg+dCEGyeDomQfsHtSQhjTAXgYwB/5pxXAQDnfD2A9YyxdQAeBfBM4/M457sA7AKAUaNGUbWEkB7kzO1noEtvOK/HufvPwXzJDLveDu9kb8S/Go+QB0LqZjP1Hu6N5M+S4T/NHyJpz5qs+dq1VyCTRSAw8E4AgEhEffYJ6Q5ufSdgjEnhSEDe5Zx/0sQh+wDc7c4YCCFdL+D2AJd9hlMGBNwVgJFHRmJU5ihE/DGiwXTqYi8xAm4P6HEJiMGQDZ0uHRERKyESeeaWECH9ldveDZijxvovAOc559vr7a8/5m02gGx3xUAI6RguNF981J/Rozqzusnnwh4Kg+843x5xi6Wtrl17FYzJEBa2zNOhENLvuLPmOAHAgwDOMMZOOff9FcDDjLEhcAzRzQewwo0xENLvcc5hr7bDWmKFtdQKS4kF1lJr3feNv1pKLFAmKJH2S1rdNewmO0o+KMH116+j6ucqMDmDLFwGy3ULAEAa5OjnIY+Se6qZHWKzVUGr3YPg4PmQyYJbP4H0aYyxtKVLl2rfeOONAgB4+umnQ/R6vXj79u1tmkZi5cqVEd98840fADzxxBPXly1bpgOA7Oxs2b333jugsrJSMmzYMOPHH3/8m5eXV4NM/9133/XNyspSbN68uaipa3vCyJEjE06ePOnWQoE7R8f8BKCpj0MH3fWahPQHglVwJA3NJBBN7efW9nWrqs6ohjHHCG7nuP76dWj3amGrsEExWIGB2wYi9KFQVPxQgeL3ixG6MLRH9vNoidF4EZzbodN9Dbtdj4iIP3k6JNIDyGQyfvDgQf/CwsKisLCwdvVOfv/9930zMzOV586dyzKZTKLx48cPufvuuys1Go2wZs2ayEcffVS7fPly3X333Rf98ssvBz755JMNJs65//77K+EYrNEptdPDdwV3JyAAzZhKSI9V/EExyr8sd0kyGg9zdZfMWzJRc7UGTMoQdHcQwh4Jg99kv7pbLUFzghA0p80TSvYoeXl/R3HxuxCJFFAoBkOlGuHpkEgjly6tCS8oeDGsq64XGflY4aBBLVc0xGIxX7hwYcnmzZtDXnnllWvtuX5WVpbXxIkT9VKpFFKpVEhMTDR+8sknvkuWLNH9/PPP6k8//TQXAJYsWVK2YcOG8MZJyI4dOwKOHTvmvXfv3it33313rFqttmdmZnqXlJRIn3322YLFixfrAOBvf/tbyAcffBDAGMMf/vCHyp07d14bPXr0kNGjR+szMjJUt912W8UjjzxStnjx4phr167JAGD79u1Xpk2bZvj++++Va9asiTabzSIvLy/h7bff/i0lJaXm2LFjXosXL46zWq1MEAR8/PHHl5OTk2uUSuVIo9F48rPPPlNv3LgxXKPRWHNychTJycnGAwcO/CYSibB//37fp556KlKj0diSk5ON+fn58u+///5SW39ulIQQ0g3KPi+rSyhqqxWRf45E2KLm32OrMqoci7t5iKXQgrjn4xC2JAyy4L6z8rjFokVJyQcAAEEwwWS6gIyMAUhOPgiVapiHoyOetnbt2uLk5OSkDRs2NPjla20Bu5EjR5o2bdoUXl1drdXr9aIjR474DB061KzVaiVqtdpeW52IjY21aLXaVn+htFqt9NixY9mnTp3ymjNnzqDFixfrPvjgA5/PP//c//jx49lqtVrQarV1y0lXVFSIf/311xzAsXjemjVrtNOnT9dfvHhRNn369Pjc3NyslJQU89GjR7OlUikOHDigfuKJJyK/+uqry6+88krQqlWrtCtXriw3m83MZnMtAp0/f15x6tSp3NjYWGtaWlpCenq6atKkSYbVq1fHHDp0KDshIcEya9asuPb+vCkJIaQZ7elLEbokFOHLwpu9VuXPlbj2asMPVoYsA4yXjLBX2mGrsN14VDq+Vv1c5e4mNo8BsnAZgu8N7lMJCAAUFr4JzhsuYioIJigUNDkZATQajTB37tyyLVu2BCsUCqF2f2sL2N11111VGRkZyptuuilBo9FYU1NT9RKJhHPueiuUMdbq/dHZs2dXiMVipKWlmcvKyqQAkJ6e7vPAAw+UqtVqAXAstFd7/IIFC+piO3z4sM/FixcVtd/r9XqxTqcTlZeXi+fNmxeXl5fnxRjjVquVAcC4ceMML7zwQlhBQYFs/vz5uuTk5JrG8SQnJxsGDhxoBYCkpCTj5cuXZWq12h4VFVWTkJBgAYD58+eXv/nmm+0qj1ISQvoNwSrAWtZEX4rmkoxSK7ilbX0pZBEySHwkLolE7cNw3uByTsELBSh4oaDpCzJA5NV1fSxEXiJIg6SOR+CNr7IgWYPv675qpGDi3jPCpa0EwYbr119z2R8WthRisZcHIiI90bp167SpqamJ8+fPr1torrVKCABs3bq1aOvWrUWAoxoxePDgmtDQUFt1dbW4tq9GXl6eLDg42Nr4Oo3V77ham8hwzpsdeVabmNQed+zYsfMqlarBG9jSpUujJ0+eXJ2enn45JydHNmXKlCEAsGLFivJJkyYZ/v3vf/veeuutg3fu3Jk3e/bsBkPg5HJ53bXEYjFsNhtrKsFqL0pCSJ9gvGhE1ZGqFqsVtgr3zYJZ+nEpSj++sTAmkzBI/CR1D7G32OUc1QgVItdEOo7xlTQ8XiVG2X/LcPbOs64vxgCJRuKaQDSRTNQe09Tr90dlZf9FTU3jxE+E8HAapEduCAkJsc+aNUu3b9++wAULFpQBrVdCbDYbSktLxaGhofaMjAxFdna28q677vpNJBJh7Nix1W+99Zb/8uXLdbt37w6YOXNmRUfimjFjRtVzzz0XvmzZsvLa2zH1qyG1Jk6cWLV169bgZ599VgsAR44cUYwfP95UVVUljoyMtADA66+/XrdY0rlz52RDhw6tSUpKKs7NzZWfOnVK0TgJaUpKSor56tWr8pycHNmQIUMs+/fv17S3TZSEkF5PsAm4uv0qCl8r9FgMPuN9MOTNIXXJhEghavCJpfzrcpyefrrBORJ/CUIfdPlgVUeVqsLg1wb3myqFu5jNV6DTpaO8/GvodF+7PB8QMBNeXjEeiIy0ZNCg7ddb60jqTuvXry/as2dPm28tWCwWNmHChAQAUKlU9j179uTW9gPZtm1bwbx58wZu2rQpIikpybh69erSFi/WjHvuuafqxIkTyhEjRgyVSqV86tSpla+++qpLB9pdu3ZdXbp0afTgwYMT7XY7GzNmTPX48eOvPPnkk0VLly6N27FjR+ikSZPq7ve+8847mg8//DBAIpHwoKAg6/PPP9+mn7tKpeLbt2/PnzFjRrxGo7GNHDnSteTbii4pp7jbqFGj+LFjxzwdBumhBJuAH6Q/eDQG9Wg10jLSmn2+5loNivcXN0go5GFyyCN617wavYHNVoWKikPOpCMdJtOFFo8fPvwraDTTuim67sUYO845H+XpONoiMzMzLyUlpUN/nInnVFZWinx9fQVBELBw4cLo+Ph48zPPPFNc/5jMzMzAlJSU2KbOp0oI6fVEEhGG/GsIch7O6fpr1/alaOFWhzRICllYy5035RFyRK2J6vL4iKOfR3X1r3XVjqqqXwC0bRizQjEY/v5T3RsgIX3YSy+9FPjee+8FWq1WlpSUZFyzZk27EklKQkif4DPOp03HSTSS1jtl1ntepBT1qinI+wPOOUymy9Dp0p2P72C3d2yOp7i458BY75lkjZCe5plnniluXPloD0pCSJ8gC5Uh+L7gFkd+SDQSiCT0B6c3slrLodN9V5d4mM2/dfhaIpECfn6TERHxKAICbu/CKEknCYIgMJFI1PP7CJA2EwSBwbFMS5MoCSF9gtRfisR3Ez0dBukigmBBVdXPKC93JB3V1cfQwvtYKxhUqlRoNNPg738LfH3HQySivjg90NmSkpLEoKCgSkpE+gZBEFhJSYkvgCaG+TlQEkII6VGMxgs4diwVgtDujvZ15PJo+PvfAo1mGvz8pkAmC2z9JOJRNpttaVFR0ZtFRUXD4MYV3km3EgCctdlsS5s7gJIQQkiPolAMhEgkhdCOwodYrIaf3811iYdCEU99eXqZtLS0YgCzPR0H6V6UhBBCuoXdbkRl5RHodOmIifkrJBJfl2PM5gKUlf0HjLV2u0QEH58x8Pe/Bf7+t8DHZwxEoq5ZOZQQ0n0oCSGEuFVBwQ5cvboNNTVX6vb5+IxDUNCd4JxDrz+FsrL/oLT0P9DrTwAApFLXOaK8vAbW9evw87sZUqlft7WBEOIelIQQQtrNbjfCZLoIozEHMlk4/PwmtnA0b5CAAEBR0b+g06WjrOw/zmnUGXx8xmPAgK0ICJgNxmQ4cSINfn5/qEs8FIp2L9BJCOnhKAkhhDSJcw6L5TqMxmwYjTnOh2O7pia/7riQkIXNJiE2WyUA13Vryso+g0ikhEYzDbGxGxEQcDtksuAGx0yYUArGaM0bQvoySkII6efqVzXqJxwmUw7sdn2r5xsMWais/Bkm02WYTJdgMl2C2ezYtlqbnzwxLe04vL0Tmn2eEhBC+j5KQgjpB25UNeonGrVVjSsAOj4tg15/HCdPjnd+xyCXR0GhGIjAwDlQKAbCy2sAzp9/EJzXQC6Pga/vePj73wK5PKxL2kYI6b0oCSGkD7HbTTCZLrjcPmlrVaOjEhL2Qq2+CV5esRCLvVyeV6mGQy6PglisdFsMhJDeh5IQQno5q1WHc+cWwGjM7nRVoz3k8mgolQlQKofA339qi5UNpXJIt8RECOldKAkhpIdyVDUuwmS6iKCgu5s9TiLxQUXFIXBe0+UxiETeUCqHOB8JdV8ViniqahBCOo2SEEJ6mDNn7oRef6pBVWP8+BLIZIHgnMNqLXF2AL1c95UxEXgnCiD1qxo3Eo0hkMsjaOZRQojbUBJCSDeorWoYjTnQaKZDIvFp9liT6VKDIbAAkJV1D+z2SphMlxr17WCQy6MhFqsgCKYWY2iqqqFQDIFSOZiqGoQQj6AkhJAu4hiBUugyr4bJlAOzOR+1VY0RI36Ej88YmM15ddWM2iGtJtNlGI05Ltc2GrOhVqfB13cSFIpBUCgGQqEYBC+vWIhEcuTmrseVK5sBUFWDENJ7uC0JYYxFAdgLIBSOlfR2cc5fZoz9E8AsABYAlwEs5pxXuCsOQrpa/apG/eGuJtMF2O3VrZ5/9uwc2Gw6APa6fSKREgrFICiVCRCLfVFd/UuDc0JDH8TAgf9s9pphYcsQFDQXSmU8xGLvDreNEEK6kzsrITYAf+Gcn2CMqQEcZ4ylA0gHsI5zbmOMbQWwDsCTboyDkHa7UdVonGg0rGp0hEwWiIiIFc5KhqOiIZOF1FUpioreQXa2IwlxVDWGQKGIb/GaCkVsh+MhhBBPcVsSwjkvBFDo3K5mjJ0HEME5/7reYb8AuMddMRDSmoZVjRuJhtGY06aqRkcoFIMQF/dss88HBNyGtLSTVNUghPR53dInhDEWC2AkgIxGTy0BsL+Zc5YDWA4A0dHRboyO9DelpZ/h+vX/hdGY3emqRnvI5VFQKhPg4zO2xeOk0gBIpQHdEhMhhHiS25MQxpgKwMcA/sw5r6q3fz0ct2zebeo8zvkuALsAYNSoUd3zV4L0CyUlH6C8/Eu3XFskUrp0CHV0EqWqBiGENObWJIQxJoUjAXmXc/5Jvf0PAZgJ4A+cd2Z2A0Lar7z8q05fo7aqcWOYq2PbMQJF1AVREkJI3+fO0TEMwL8AnOecb6+3fwYcHVEnc86N7np9QpqTmpqBjIy4Vo+jqgYhhLiXOyshEwA8COAMY+yUc99fAewAIAeQ7hwN8AvnfIUb4yCkAYUiFlJpEKzWEgBU1SCEEE9x5+iYnwA0NTPSQXe9JiFtNXToPkilAc7ZQqmqQQghnkAzppJ+SaOZ6ukQCCGk36NaMyGEEEI8gpIQQgghhHgEJSGEEEII8QhKQgghhBDiEZSEEEIIIcQjKAkhhBBCiEew3jBrOmOsBEB+F1wqEEBpF1ynp6N29i3Uzr6ju9sYwzkP6sbXI6RdekUS0lUYY8c456M8HYe7UTv7Fmpn39Ef2khIe9DtGEIIIYR4BCUhhBBCCPGI/paE7PJ0AN2E2tm3UDv7jv7QRkLarF/1CSGEEEJIz9HfKiGEEEII6SEoCSGEEEKIR/SZJIQxNoMxlsMYu8QYe6qJ56MZY98zxk4yxk4zxm5r4nk9Y+zx7ou6/TrTTsbYcMbYz4yxLMbYGcaYV/dG33YdbSdjTMoY2+Ns33nG2Lruj75t2tDGGMbYt872HWKMRdZ77iHG2EXn46Hujbx9OtpOxtiIev9fTzPG5nV/9G3XmX9P5/M+jLFrjLFXuy9qQjyMc97rHwDEAC4DGABABiATQGKjY3YBWOncTgSQ1+j5jwF8COBxT7fHHe0EIAFwGkCK8/sAAGJPt8kN7bwPwPvObSWAPACxnm5TB9v4IYCHnNtTALzj3NYAyHV+9Xdu+3u6TW5o52AA8c7tcACFAPw83aaubme9518GsA/Aq55uDz3o0V2PvlIJGQ3gEuc8l3NuAfA+gDsaHcMB+Di3fQFcr32CMXYnHG/kWd0Qa2d0pp3TAJzmnGcCAOe8jHNu74aYO6Iz7eQAvBljEgAKABYAVe4Pud3a0sZEAN86t7+v9/x0AOmc83LOuQ5AOoAZ3RBzR3S4nZzzC5zzi87t6wCKAfTU2T878+8JxlgagBAAX3dDrIT0GH0lCYkAcLXe9wXOffVtAPAAY6wAwEEAfwIAxpg3gCcB/N39YXZah9sJx6dKzhj7ijF2gjH2hLuD7YTOtPMjAAY4PjVfAfAC57zcrdF2TFvamAngbuf2HABqxlhAG8/tKTrTzjqMsdFwVBguuynOzupwOxljIgDbAKx1e5SE9DB9JQlhTexrPPZ4AYC3OeeRAG4D8I7zl//vAF7knOvdHGNX6Ew7JQAmArjf+XUOY+wP7gy2EzrTztEA7HCU7+MA/IUxNsCdwXZQW9r4OIDJjLGTACYDuAbA1sZze4rOtNNxAcbCALwDYDHnXHBXoJ3UmXauAnCQc34VhPQzEk8H0EUKAETV+z4S9W63OD0MZ8mac/6zs1NmIIAxAO5hjP0DgB8AgTFm5pz3xM5hnWlnAYD/j3NeCgCMsYMAUnGjPNyTdKad9wH4knNuBVDMGDsMYBQct9t6klbb6LwFcRcAMMZUAO7mnFc6qz+/b3TuIXcG2wkdbqfzex8AnwP4G+f8l26JuGM68+85DsAkxtgqACoAMsaYnnPu0rmVkL6mr1RCfgUQzxiLY4zJAMwH8J9Gx1wB8AcAYIwNBeAFoIRzPolzHss5jwXwEoDNPTQBATrRTgBfARjOGFM6+0tMBnCu2yJvn8608wqAKczBG8BYANndFnnbtdpGxligs7oDAOsA7HZufwVgGmPMnzHmD0d/n6+6Ke726nA7ncf/G8BezvmH3RhzR3S4nZzz+znn0c73oMfhaC8lIKRf6BNJCOfcBuBRON6IzwP4gHOexRjbyBib7TzsLwCWMcYyAbwHYBHnvKeWsJvUmXY6OzBuh+PN8hSAE5zzz7u/Fa3r5L/n/8LxafIsHG19i3N+utsb0Yo2tvH3AHIYYxfg6LT4nPPccgDPwtG+XwFs7KH9XjrVTgD3AvgdgEWMsVPOx4jubUHbdLKdhPRbNG1r/UilAAACsElEQVQ7IYQQQjyiT1RCCCGEENL7UBJCCCGEEI+gJIQQQgghHkFJCCGEEEI8gpIQQgghhHgEJSGEuBFj7Ijzayxj7D5Px0MIIT0JJSGEdJJz8rcmcc7HOzdj4ZjNlRBCiBMlIaTfYYx5M8Y+Z4xlMsbOMsbmMcbyGGNbGWNHnY9BzmNnMcYyGGMnGWPfMMZCnPs3MMZ2Mca+BrCXMZbkPO8UY+w0YyzeeVztmkRb4Jia+xRj7DHG2I/1J95ijB1mjA3v5h8FIYR4FCUhpD+aAeA65zyFcz4MwJfO/VWc89EAXoVjCn8A+AnAWM75SDiWZ6+/+nAagDs45/cBWAHgZc75CDjWqilo9JpPAfiRcz6Cc/4igDcBLAIAxthgAPKeOLMrIYS4EyUhpD86A2Cqs/IxqXaxNDimf6/9Os65HQngK8bYGTiWWk+qd53/cM5Nzu2fAfyVMfYkgJh6+5vzIYCZjDEpgCUA3u5UiwghpBeiJIT0O5zzC3BUMc4AeJ4x9nTtU/UPc359BcCrnPNkAI/AsVBeLUO9a+4DMBuACY6kZUorMRgBpAO4A441UvZ1uEGEENJLURJC+h3GWDgAI+f8/wC8ACDV+dS8el9/dm77Arjm3H6ohWsOAJDLOd8Bx+qpjft3VANQN9r3JoAdAH7tqQvQEUKIOzXbq5+QPiwZwD8ZYwIAK4CVAD4CIGeMZcCRnC9wHrsBwIeMsWsAfgEQ18w15wF4gDFmBVAEYGOj508DsDlX/X2bc/4i5/w4Y6wKwFtd1zRCCOk9aBVdQgAwxvIAjOKcl3bja4YDOAQggXMudNfrEkJIT0G3YwjxAMbYQgAZANZTAkII6a+oEkIIIYQQj6BKCCGEEEI8gpIQQgghhHgEJSGEEEII8QhKQgghhBDiEZSEEEIIIcQj/n880m+VWh1egQAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "for n,(rank,df) in enumerate(data_by_rank):\n",
+    "    df_sorted=df.sort_values(by=\"post_sparsity\",axis=0)\n",
+    "    knots=list(zip(df_sorted[\"post_sparsity\"],df_sorted[\"pre_error\"]))\n",
+    "    temp=monotone_invert(knots)\n",
+    "    plt.plot(temp.tvals,temp.yvals,label=\"N={:}\".format(rank),color=colorsequence[n])\n",
+    "    try:\n",
+    "        plt.plot(temp.tvals,temp.y_approx_vals,label=\"N={:} increasing\".format(rank),linewidth=5,linestyle=\"-.\",color=colorsequence[n])\n",
+    "    except Exception:\n",
+    "        pass\n",
+    "plt.legend(bbox_to_anchor=(1.5, 1))\n",
+    "plt.xlabel(\"sparsity\")\n",
+    "plt.ylabel(\"error\")\n",
+    "plt.title(\"error as a function of sparsity\",fontsize=\"xx-large\")\n",
+    "plt.show()\n",
+    "plt.close()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/ErrorAnalysis/LevelCurveData.csv b/ErrorAnalysis/LevelCurveData.csv
new file mode 100644
index 0000000..d971dc3
--- /dev/null
+++ b/ErrorAnalysis/LevelCurveData.csv
@@ -0,0 +1,61 @@
+rank,beta,no_iterations,pre_error,post_error,pre_sparsity,post_sparsity,spikey_mean,spikey_std,H_zero_percent
+40, 0, 263, 26.638031397717054, 41.724601050259544, 0.67325284492187731, 0.83886543276276293, 0.72028885344810667, 0.12273128670231878, 88.617506516072979
+40, 1000, 174, 26.958007515716751, 41.843305109070073, 0.69356453889132996, 0.85168751495432315, 0.66460491493350582, 0.11264921227496043, 89.375543006081671
+40, 2000, 176, 26.952958843064685, 41.781512272409202, 0.7159659714475104, 0.86504193516909433, 0.6292072676973659, 0.11326718316899911, 90.285621198957429
+40, 3000, 177, 26.99067270226001, 41.414115220792716, 0.73047877626970825, 0.8725219776895965, 0.60835118695759827, 0.11524625383904943, 90.801476976542133
+40, 4000, 179, 27.039436594751677, 41.120108229945949, 0.74184594890452971, 0.87848726607750238, 0.5940851637864637, 0.11798757392003154, 91.222849695916594
+40, 5000, 180, 27.107602503295279, 40.823740345452848, 0.75037304885384026, 0.88269952771775984, 0.58489361354886782, 0.12128213478529042, 91.524761077324072 
+40, 6000, 179, 27.200291126190969, 40.558132779679291, 0.75634896872700808, 0.88520633768520951, 0.57985304852964448, 0.12530576652353559, 91.705039096437872 
+40, 7000, 177, 27.313105633909874, 40.605093156077182, 0.76075454626941741, 0.88728047296740997, 0.57793679353361738, 0.13099657542516566, 91.867940920938324 
+40, 8000, 171, 27.471069408807438, 40.606574440512652, 0.76233800386547534, 0.88784656331464851, 0.58120044650522718, 0.14184094914867784, 91.922241529105136 
+40, 9000, 182, 27.645194093681262, nan, 0.77346957348226941, 0.89527298571298053, nan, nan, 92.36533449174631 
+50, 0, 270, 25.361974879499726, 41.153542763466575, 0.69413691657026422, 0.84800865900979538, 0.7690004104714151, 0.13400221938529913, 90.075586446568195 
+50, 1000, 187, 25.667488313833587, 41.022584127903777, 0.72467777146746803, 0.86635489748508121, 0.68550906050398186, 0.1262949187060492, 91.196350999131198 
+50, 2000, 200, 25.591666460155103, 40.39731143361653, 0.75584991622536346, 0.88390220269598752, 0.64143662985883265, 0.12523309193670976, 92.250217202432665 
+50, 3000, 211, 25.597565626508263, 39.414694316878965, 0.77684009657568098, 0.89420645792373921, 0.62153097257674439, 0.13942192209413276, 92.930495221546479 
+50, 4000, 198, 25.726619578670263, 39.49510793695211, 0.78126249677587556, 0.89629986592187361, 0.62470511915051508, 0.16359308940399897, 93.070373588184182 
+50, 5000, 195, 25.831229954294255, 39.344771564578735, 0.7885154003763738, 0.89977344724911545, 0.62403691464535294, 0.17415597860999174, 93.295395308427459 
+50, 6000, 187, 26.009027804741812, 39.566180993422961, 0.79282984613343566, 0.90225974681792287, 0.63045936933398361, 0.18922762238732152, 93.439617723718499 
+50, 7000, 193, 26.131917995570713, 39.161717437635652, 0.80133901537598906, 0.90612952884170606, 0.63647992536637266, 0.20342084992153153, 93.719374456993918 
+50, 8000, 179, 26.513574437011219, nan, 0.79786349170602122, 0.90518792293360928, nan, nan, 93.678540399652476 
+50, 9000, 192, 26.576390813456225, nan, 0.80730160445778809, 0.91005402695776139, nan, nan, 94.013900955690701 
+60, 0, 283, 24.401842511771516, 40.857266274824674, 0.71223134003702837, 0.85822783556708881, 0.80277515092238261, 0.13893453688376767, 91.062843903851714 
+60, 1000, 253, 24.343229865424874, 39.466929735758683, 0.7745164987937021, 0.89367444598244061, 0.67435358868257744, 0.14112619254937317, 93.33767738198668 
+60, 2000, 214, 24.572460128060531, 39.407979847131273, 0.78748455258637362, 0.90131439847856643, 0.64556759707419387, 0.12915004642516226, 93.73515783376773 
+60, 3000, 207, 24.723011401582752, 39.306247343162227, 0.80275926058763114, 0.90887922676772792, 0.63290823166849597, 0.13683144879530809, 94.185490877497827 
+60, 4000, 195, 24.903298316153403, 39.109694717806306, 0.81098202482486215, 0.91204317596731466, 0.64271558428264253, 0.16524298224070413, 94.420793512887343 
+60, 5000, 197, 25.128870597103951, nan, 0.82076272006534146, 0.91658580386172706, nan, nan, 94.717636837532581 
+60, 6000, 194, 25.307036037160085, nan, 0.82571776987107237, 0.91822416435101739, nan, nan, 94.879814653924115 
+60, 7000, 207, 25.425537392231611, nan, 0.8361603279741987, 0.92368015293728489, nan, nan, 95.238198667825074 
+60, 8000, 201, 25.715511558804522, nan, 0.83791917147830897, 0.92444426549173964, nan, nan, 95.326527657109764 
+60, 9000, 213, 25.894979424435977, nan, 0.84520219258720641, 0.92825734062089116, nan, nan, 95.577034462785974 
+70, 0, 285, 23.537054973003908, 40.50742935332201, 0.72857544402763685, 0.8648039548726123, 0.82806412560347364, 0.13663207951579212, 92.172024326672471 
+70, 1000, 195, 23.756524428006948, 39.466493856609041, 0.77953485637027375, 0.89440105522421509, 0.69487120202164865, 0.12216759223169046, 93.758843241901459 
+70, 2000, 213, 23.691146425415369, 38.150235566876525, 0.81418009581596595, 0.91272850010681139, 0.65757960524343262, 0.14609315424623276, 94.808241280873773 
+70, 3000, 189, 23.988770696234344, 38.370242127666017, 0.8194416683299397, 0.91519093753748071, 0.6682867432668459, 0.17576901368216086, 94.929874643167437 
+70, 4000, 203, 24.129948770310854, nan, 0.83627936115278789, 0.92177932660140294, nan, nan, 95.343800421993294 
+70, 5000, 187, 24.381454836475747, nan, 0.83520960875287265, 0.92125445560783958, nan, nan, 95.34442100037235 
+70, 6000, 171, 24.720095164876792, nan, 0.83311935865836406, 0.91992166591941094, nan, nan, 95.299118778701754 
+70, 7000, 161, 25.05158084398013, nan, 0.83157203440145933, 0.91982081520358461, nan, nan, 95.313392081419877 
+70, 8000, 165, 25.22024877964142, nan, 0.83661946673827148, 0.92200350138435783, nan, nan, 95.449919324810722 
+70, 9000, 157, 25.573799364708616, nan, 0.83630884481801682, 0.92155344957094532, nan, nan, 95.505771378925147 
+80, 0, 281, 22.636278271387898, 39.887151616604619, 0.75738347686055685, 0.88127514351560166, 0.8105852007225165, 0.14156684018178284, 93.178214596003471 
+80, 1000, 205, 22.78596344770866, 38.541130831356845, 0.80853767930234421, 0.91043572154043251, 0.68212199197113199, 0.14101485644376127, 94.77628149435273 
+80, 2000, 190, 23.08736296153922, nan, 0.82474013387848777, 0.91938796784914301, nan, nan, 95.248153779322337 
+80, 3000, 179, 23.298403361291445, nan, 0.833686121005212, 0.92405198313686931, nan, nan, 95.520742832319726 
+80, 4000, 178, 23.535499082978905, nan, 0.84086917865995325, 0.92878882126205531, nan, nan, 95.793874891398787 
+80, 5000, 192, 23.703208733677574, nan, 0.85342220264130264, 0.93371041649683928, nan, nan, 96.139226759339707 
+80, 6000, 202, 23.905871890100787, nan, 0.86236142377069858, 0.93697100507372411, nan, nan, 96.380864465682009 
+80, 7000, 171, 24.401882615429471, nan, 0.85635455397192528, 0.93461893395884199, nan, nan, 96.254344048653337 
+80, 8000, 160, 24.818266151599811, nan, 0.85411315311641933, 0.93420457746656527, nan, nan, 96.265204170286708 
+80, 9000, 158, 25.005475589325489, nan, 0.85761781186454089, 0.93569928710401928, nan, nan, 96.379778453518682 
+90, 0, 286, 21.94604631030424, 39.842869283492874, 0.76476026484713078, 0.88511906907400839, 0.84185233901287559, 0.13732491883874726, 93.70499082923061 
+90, 1000, 210, 22.325355955057109, nan, 0.82469327475286669, 0.91781298176761772, nan, nan, 95.565208997007431 
+90, 2000, 210, 22.62522228432957, nan, 0.84920331261463677, 0.92955632758390927, nan, nan, 96.208610869775086 
+90, 3000, 198, 23.265542877435518, nan, 0.85581819617181187, 0.93281993044293643, nan, nan, 96.404575731248187 
+90, 4000, 206, 23.588831981253332, nan, 0.8683624102708436, 0.93728651228334203, nan, nan, 96.673906747755581 
+90, 5000, 172, 24.027407736896699, nan, 0.8637108211840695, 0.93566270228013793, nan, nan, 96.579785693599774 
+90, 6000, 172, 24.504014534389952, nan, 0.86758641011764348, 0.93681710404318952, nan, nan, 96.674389419828159 
+90, 7000, 162, 24.801416841360901, nan, 0.86725454031856675, 0.93647063010261855, nan, nan, 96.683560189207455 
+90, 8000, 217, 24.845113748207705, nan, 0.88525984572069238, 0.94296351585595661, nan, nan, 97.072111207645534 
+90, 9000, 214, 25.350232028414688, nan, 0.88412497215527386, 0.94417677677683653, nan, nan, 97.119413070759734
diff --git a/ErrorAnalysis/QP.ipynb b/ErrorAnalysis/QP.ipynb
new file mode 100644
index 0000000..3b51a24
--- /dev/null
+++ b/ErrorAnalysis/QP.ipynb
@@ -0,0 +1,228 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<img src=\"../logo.png\" alt=\"University of Illinois\" style=\"width: 200px;\"/>\n",
+    "\n",
+    "## Quadratic Programming ##\n",
+    "By Richard Sowers\n",
+    "* <r-sowers@illinois.edu>\n",
+    "* <https://publish.illinois.edu/r-sowers/>\n",
+    "\n",
+    "Copyright 2019 University of Illinois Board of Trustees. All Rights Reserved.\n",
+    "Licensed under the MIT license"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### imports ###"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 67,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy\n",
+    "#%matplotlib notebook\n",
+    "import matplotlib.pyplot as plt\n",
+    "import scipy.optimize\n",
+    "import scipy.interpolate"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 68,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "knots=[(1,1),(2,2.5),(2.1,1.9),(4,2)]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 69,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "tvals=numpy.array([t for t,_ in knots])\n",
+    "yvals=numpy.array([y for _,y in knots])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 70,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEaxJREFUeJzt3X2snnddx/H3x+6oNZuW0BPZutUaAjVqmB1HmZkP8yF2PIRNxQjqYISliQ8IkVQyoixKYtRGQpBgU7dloDggrKlzARuM6KJk09N1rNtqYRGBtjM92+w24cSs5esf5+6P7nAe7gO97uvcPe9Xcqf3fV2/c1/f337tPue6ftdDqgpJkgC+pe8CJEmrh6EgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEnNBX0XsFIbN26sLVu29F2GJI2VAwcOPF5Vk8u1G7tQ2LJlC9PT032XIUljJckXhmnn4SNJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJzdhdp6Dzx76Dx9i1/wjHT85yyYb17Ny+leu2beq7LGlNMxTUi30Hj3HT3kPMPnsagGMnZ7lp7yEAg0HqkYeP1Itd+4+0QDhj9tnT7Np/pKeKJIGhoJ4cPzm7ouWSRsNQUC8u2bB+RcsljYahoF7s3L6V9RPrnrNs/cQ6dm7f2lNFksCJZvXkzGSyZx9Jq4uhoN5ct22TISCtMh4+kiQ1hoIkqTEUJEmNoSBJajoLhSSXJflUksNJHk7yliXa/nCS00le01U9kqTldXn20SngbVV1f5KLgANJPllVj5zdKMk64E+A/R3WIkkaQmd7ClX1WFXdP3j/DHAYWOj8wzcDdwInuqpFkjSckcwpJNkCbAPum7d8E/DzwO5R1CFJWlrnoZDkQub2BN5aVU/PW/0e4O1Vdfrrf/I537EjyXSS6ZmZma5KlaQ1L1XV3ZcnE8DdwP6qevcC6z8PZPBxI/AVYEdV7VvsO6empmp6erqLciXpvJXkQFVNLdeus4nmJAFuBQ4vFAgAVfW9Z7W/Hbh7qUCQJHWry7OPrgKuBw4leWCw7B3AZoCqch5BklaZzkKhqv6Frx0aGqb9DV3VIkkajlc0S5IaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSms5CIcllST6V5HCSh5O8ZYE2v5rkwcHr00ku76oeSdLyunxG8yngbVV1f5KLgANJPllVj5zV5vPAT1bV/yR5ObAHeFmHNUmSltDlM5ofAx4bvH8myWFgE/DIWW0+fdaP3Atc2lU9kqTljWROIckWYBtw3xLN3gR8YhT1SJIW1uXhIwCSXAjcCby1qp5epM1PMRcKP7bI+h3ADoDNmzd3VKkkqdM9hSQTzAXCh6pq7yJtXgLcAlxbVU8s1Kaq9lTVVFVNTU5OdlewJK1xXZ59FOBW4HBVvXuRNpuBvcD1VfXZrmqRJA2ny8NHVwHXA4eSPDBY9g5gM0BV7QbeCTwfeP9chnCqqqY6rEmStIQuzz76FyDLtLkRuLGrGiRJK+MVzZKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpKbLZzRfluRTSQ4neTjJWxZokyTvTfJokgeTXNFVPZKk5XX5jOZTwNuq6v4kFwEHknyyqh45q83LgRcNXi8D/mLwpyQJ2HfwGLv2H+H4yVku2bCendu3ct22TZ1tr7M9hap6rKruH7x/BjgMzO/JtcAHa869wIYkF3dVkySNk30Hj3HT3kMcOzlLAcdOznLT3kPsO3iss22OZE4hyRZgG3DfvFWbgC+d9fkoXx8ckrQm7dp/hNlnTz9n2eyzp9m1/0hn2+w8FJJcCNwJvLWqnp6/eoEfqQW+Y0eS6STTMzMzXZQpSavO8ZOzK1p+LnQaCkkmmAuED1XV3gWaHAUuO+vzpcDx+Y2qak9VTVXV1OTkZDfFStIqc8mG9Stafi50efZRgFuBw1X17kWa3QW8fnAW0pXAU1X1WFc1SdI42bl9K+sn1j1n2fqJdezcvrWzbXZ59tFVwPXAoSQPDJa9A9gMUFW7gY8DrwAeBb4CvLHDeiRprJw5y2iUZx+l6usO4a9qU1NTNT093XcZkjRWkhyoqqnl2nlFsySpMRQkSY2hIElqDAVJUmMoSJKaLk9Jlc6JUd8QTFrLDAWtamduCHbm/i9nbggGGAxSBzx8pFWtjxuCSWuZoaBVrY8bgklrmaGgVa2PG4JJa5mhoFWtjxuCSWuZE81a1fq4IZi0lhkKWvWu27bJEJBGxMNHkqTGUJAkNYaCJKkxFCRJTZfPaL4tyYkkDy2y/ruS/F2SzyR5OImP4pSknnW5p3A7cM0S638TeKSqLgeuBv4sybd2WI8kaRmdhUJV3QM8uVQT4KIkAS4ctD3VVT2SpOX1eZ3C+4C7gOPARcAvV9VXe6xHkta8PieatwMPAJcAPwS8L8l3LtQwyY4k00mmZ2ZmRlmjJK0pfYbCG4G9NedR4PPA9y3UsKr2VNVUVU1NTk6OtEhJWkv6DIUvAj8DkOS7ga3Af/ZYjySteZ3NKSS5g7mzijYmOQrcDEwAVNVu4F3A7UkOAQHeXlWPd1WPJGl5y4ZCkt8CPlRV/7OSL66q1y2z/jjwcyv5TklSt4Y5fPQC4N+TfDTJNYNTSCVJ56FlQ6Gqfg94EXArcAPwuSR/lOSFHdcmSRqxoSaaq6qA/x68TgHPAz6W5E87rE2SNGLDzCn8NvAG4HHgFmBnVT2b5FuAzwG/222JkqRRGebso43AL1TVF85eWFVfTfKqbsqSJPVh2VCoqncuse7wuS1HktQnn6cgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSms5CIcltSU4keWiJNlcneSDJw0n+uataJEnD6XJP4XbgmsVWJtkAvB94dVX9APBLHdYiSRpCZ6FQVfcATy7R5FeAvVX1xUH7E13VIkkaTp9zCi8Gnpfkn5IcSPL6xRom2ZFkOsn0zMzMCEuUpLWlz1C4AHgp8EpgO/D7SV68UMOq2lNVU1U1NTk5OcoaJWlNGebJa105CjxeVV8GvpzkHuBy4LM91iRJa1qfewp/C/x4kguSfAfwMsAnuUlSjzrbU0hyB3A1sDHJUeBmYAKgqnZX1eEkfw88CHwVuKWqFj19VZLUvc5CoapeN0SbXcCurmqQJK2MVzRLkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJKazkIhyW1JTiRZ8hGbSX44yekkr+mqFknScLrcU7gduGapBknWAX8C7O+wDknSkDoLhaq6B3hymWZvBu4ETnRVhyRpeL3NKSTZBPw8sHuItjuSTCeZnpmZ6b44SVqj+pxofg/w9qo6vVzDqtpTVVNVNTU5OTmC0iRpbbqgx21PAR9OArAReEWSU1W1r8eaJGlN6y0Uqup7z7xPcjtwt4EgSf3qLBSS3AFcDWxMchS4GZgAqKpl5xEkSaPXWShU1etW0PaGruqQJA3PK5olSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJElNZ6GQ5LYkJ5I8tMj6X03y4OD16SSXd1WLJGk4Xe4p3A5cs8T6zwM/WVUvAd4F7OmwFknSELp8RvM9SbYssf7TZ328F7i0q1okScNZLXMKbwI+sdjKJDuSTCeZnpmZGWFZkrS29B4KSX6KuVB4+2JtqmpPVU1V1dTk5OToipOkNaazw0fDSPIS4Bbg5VX1RJ+1SJJ63FNIshnYC1xfVZ/tqw5J0td0tqeQ5A7gamBjkqPAzcAEQFXtBt4JPB94fxKAU1U11VU9kqTldXn20euWWX8jcGNX25ckrVzvE82SpNXDUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktR0FgpJbktyIslDi6xPkvcmeTTJg0mu6KoWSdJwOnvyGnA78D7gg4usfznwosHrZcBfDP7sxL6Dx9i1/wjHT85yyYb17Ny+leu2bepqc5I0ljrbU6iqe4Anl2hyLfDBmnMvsCHJxV3Usu/gMW7ae4hjJ2cp4NjJWW7ae4h9B491sTlJGlt9zilsAr501uejg2Xn3K79R5h99vRzls0+e5pd+490sTlJGlt9hkIWWFYLNkx2JJlOMj0zM7PiDR0/Obui5ZK0VvUZCkeBy876fClwfKGGVbWnqqaqampycnLFG7pkw/oVLZektarPULgLeP3gLKQrgaeq6rEuNrRz+1bWT6x7zrL1E+vYuX1rF5uTpLHV2dlHSe4ArgY2JjkK3AxMAFTVbuDjwCuAR4GvAG/sqpYzZxl59pEkLS1VCx7GX7WmpqZqenq67zIkaawkOVBVU8u184pmSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSc3YXaeQZAb4wjfxFRuBx89ROX07X/pyvvQDzp++2I/V55vty/dU1bL3CRq7UPhmJZke5gKOcXC+9OV86QecP32xH6vPqPri4SNJUmMoSJKatRgKe/ou4Bw6X/pyvvQDzp++2I/VZyR9WXNzCpKkxa3FPQVJ0iLO21BIcluSE0keWmR9krw3yaNJHkxyxahrHMYQ/bg6yVNJHhi83jnqGoeR5LIkn0pyOMnDSd6yQJtVPyZD9mNcxuTbk/xbks8M+vIHC7T5tiQfGYzJfUm2jL7SpQ3ZjxuSzJw1Jjf2UeswkqxLcjDJ3Qus6348quq8fAE/AVwBPLTI+lcAn2DuWdFXAvf1XfM32I+rgbv7rnOIflwMXDF4fxHwWeD7x21MhuzHuIxJgAsH7yeA+4Ar57X5DWD34P1rgY/0Xfc32I8bgPf1XeuQ/fkd4G8W+js0ivE4b/cUquoe4MklmlwLfLDm3AtsSHLxaKob3hD9GAtV9VhV3T94/wxwGJj/6LtVPyZD9mMsDP47/+/g48TgNX+S8VrgA4P3HwN+JklGVOJQhuzHWEhyKfBK4JZFmnQ+HudtKAxhE/Clsz4fZUz/cQM/Oth1/kSSH+i7mOUMdnm3Mfcb3dnGakyW6AeMyZgMDlU8AJwAPllVi45JVZ0CngKeP9oqlzdEPwB+cXBY8mNJLhtxicN6D/C7wFcXWd/5eKzlUFgoXcfxt4v7mbt8/XLgz4F9PdezpCQXAncCb62qp+evXuBHVuWYLNOPsRmTqjpdVT8EXAr8SJIfnNdkLMZkiH78HbClql4C/ANf+2171UjyKuBEVR1YqtkCy87peKzlUDgKnP3bwqXA8Z5q+YZV1dNndp2r6uPARJKNPZe1oCQTzP2P9ENVtXeBJmMxJsv1Y5zG5IyqOgn8E3DNvFVtTJJcAHwXq/hw5mL9qKonqur/Bh//EnjpiEsbxlXAq5P8F/Bh4KeT/PW8Np2Px1oOhbuA1w/OeLkSeKqqHuu7qJVK8oIzxxST/AhzY/pEv1V9vUGNtwKHq+rdizRb9WMyTD/GaEwmk2wYvF8P/CzwH/Oa3QW8YfD+NcA/1mCWc7UYph/z5qZezdxc0KpSVTdV1aVVtYW5SeR/rKpfm9es8/G44Fx+2WqS5A7mzgLZmOQocDNzE1BU1W7g48yd7fIo8BXgjf1UurQh+vEa4NeTnAJmgdeutn+0A1cB1wOHBsd+Ad4BbIaxGpNh+jEuY3Ix8IEk65gLro9W1d1J/hCYrqq7mAvAv0ryKHO/kb62v3IXNUw/fjvJq4FTzPXjht6qXaFRj4dXNEuSmrV8+EiSNI+hIElqDAVJUmMoSJIaQ0GS1BgK0jmQZEOS3+i7DumbZShI58YG5u5gKY01Q0E6N/4YeOHgXv27+i5G+kZ58Zp0DgzumHp3Vc2/EZs0VtxTkCQ1hoIkqTEUpHPjGeYezymNNUNBOgeq6gngX5M85ESzxpkTzZKkxj0FSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElq/h8xymI7NaxC+AAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "plt.scatter(tvals,yvals)\n",
+    "plt.xlabel(\"t\")\n",
+    "plt.ylabel(\"y\")\n",
+    "plt.show()\n",
+    "plt.close()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 71,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "4\n",
+      "     fun: 0.10333338033924057\n",
+      "   maxcv: 3.9302328752599825e-19\n",
+      " message: 'Optimization terminated successfully.'\n",
+      "    nfev: 133\n",
+      "  status: 1\n",
+      " success: True\n",
+      "       x: array([ 9.99914525e-01,  1.13358881e+00,  4.81482486e-35, -3.93023288e-19])\n",
+      "[0.99991452 2.13350334 2.13350334 2.13350334]\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\richa\\Anaconda3\\lib\\site-packages\\scipy\\optimize\\_minimize.py:502: RuntimeWarning: Method COBYLA does not use gradient information (jac).\n",
+      "  RuntimeWarning)\n",
+      "C:\\Users\\richa\\Anaconda3\\lib\\site-packages\\scipy\\optimize\\_minimize.py:513: RuntimeWarning: Method COBYLA does not use Hessian-vector product information (hessp).\n",
+      "  'information (hessp).' % method, RuntimeWarning)\n"
+     ]
+    }
+   ],
+   "source": [
+    "class monotone_invert:\n",
+    "    def __init__(self,knots):\n",
+    "        self.tvals=numpy.array([t for t,_ in knots])\n",
+    "        self.yvals=numpy.array([y for _,y in knots])\n",
+    "        self.N=len(knots)\n",
+    "        self.L=numpy.tril(numpy.ones(shape=(self.N,self.N)),k=0)\n",
+    "        def objective(d):\n",
+    "            error=self.yvals-self.L.dot(d)\n",
+    "            return 0.5*error.dot(error)\n",
+    "        \n",
+    "        def jacobian(d):\n",
+    "            error=self.yvals-self.L.dot(d)\n",
+    "            return self.L.T.dot(error)\n",
+    "        \n",
+    "        def hessian(d):\n",
+    "            return self.L.T*dot(self.L)\n",
+    "        \n",
+    "        print(self.N)\n",
+    "        constraints={\"type\":\"ineq\",\"fun\":lambda x:x}\n",
+    "        res=scipy.optimize.minimize(objective,self.yvals,method=\"COBYLA\",jac=jacobian,hessp=hessian,constraints=constraints)\n",
+    "        print(res)\n",
+    "        d_best=res.x\n",
+    "        self.y_approx_vals=self.L.dot(d_best)\n",
+    "        print(self.y_approx_vals)\n",
+    "        \n",
+    "        self.linapprox=scipy.interpolate.interp1d(self.tvals,self.y_approx_vals,copy=True,bounds_error=True)\n",
+    "        \n",
+    "    def invert(self,yval):\n",
+    "        if not (min(self.y_approx_vals)<yval<max(self.y_approx_vals)):\n",
+    "            return numpy.nan\n",
+    "        \n",
+    "        tval=scipy.optimize.brentq(lambda x:self.linapprox(x)-yval,min(self.tvals),max(self.tvals))\n",
+    "        return tval\n",
+    "            \n",
+    "        \n",
+    "    \n",
+    "        \n",
+    "test=monotone_invert(knots)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 72,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAF55JREFUeJzt3X+Q1PV9x/Hny0Cb62iLI7TCAUUnjY010ZiLtRNbSXGqoQlMI21jFEKiw1QwTWL8UTNRazQz0QDa6AgDiohVqoNOIA6USRtaq6Cdwxp+SJvRS9Mwd5YzJhr1JhZ994/vbjzO3dvv3n13v7vffT1mbtjd74fd99evvPdzn/3u66uIwMzMiuWovAswM7PsubmbmRWQm7uZWQG5uZuZFZCbu5lZAbm5m5kVkJu7mVkBubmbmRWQm7uZWQFNyOuFJ0+eHLNmzcrr5c3M2tLu3btfjIgptcbl1txnzZpFb29vXi9vZtaWJP0ozTgvy5iZFZCbu5lZAbm5m5kVkJu7mVkBubmbmRWQm7uNT18fLF0K3d1w1FHJn0uXJo+bWW7c3G3stm6FU06BVaugvx8ikj9XrUoe37o17wrNOpabu41NXx8sWABDQ5W3Dw0l2z2DN8uFm7uNzfLl1Rt72dBQMs7Mms7N3cZm8+Zsx5lZptzcbWwGBtKNe+GFxtZhZhW5udvYTJ2abtzxxze2DjOryM3dxmb+/GzHmVmm3NxtbK64Arq6Rh/T1QVXXtmceszsCG7uNjYnngibNlVv8F1dyfYTTmhuXWYGuLnbeMydC/v2waWXwrRpyTdUp01L7u/fn2w3s1woInJ54Z6envDFOszM6iNpd0T01BrnmbuZWQG5uZuZFVDN5i5phqQdkg5I2i/pC6OM/bCkNyUtyLZMMzOrR5oLZB8GvhwRT0s6Btgt6bsR8ezwQZLeBdwMbG9AnWZmVoeaM/eIGIiIp0u3fw4cALorDP088DBwKNMKzcysbnWtuUuaBXwQeGrE493AnwGrsyrMzMzGLnVzl3Q0ycz8ixHxyojNtwFXR8SbNZ5jiaReSb2Dg4P1V2tmZqmkOs9d0kTgUWB7RKyssP2HgEp3JwOvA0si4tvVntPnuZuZ1S/tee41P1CVJOBu4EClxg4QEScMG78eeHS0xm5mZo2V5myZjwALgb2Snik99hVgJkBEeJ3dzKzF1GzuEfE4by+51BQRi8dTkJmZjZ+/oWpmVkBu7mZmBeTmbmZWQG7uZmYF5OZuZlZAbu5mZgXk5m5mVkBu7mZmBeTmbmZWQG7uZmYF5OZuZlZAbu5mZgXk5m5mVkBu7mZmBeTmbmZWQG7uZmYF5OZuZlZANZu7pBmSdkg6IGm/pC9UGHOhpD2ln52STm1MuWZmlkaaa6geBr4cEU9LOgbYLem7EfHssDE/BM6OiJ9K+hiwBvj9BtRrZmYppLmG6gAwULr9c0kHgG7g2WFjdg77K08C0zOu08zM6lDXmrukWcAHgadGGXYxsG3sJZmZ2XilWZYBQNLRwMPAFyPilSpjPkrS3M+qsn0JsARg5syZdRdrZmbppJq5S5pI0tjvj4hHqoz5AHAXMD8iflJpTESsiYieiOiZMmXKWGs2M7Ma0pwtI+Bu4EBErKwyZibwCLAwIn6QbYlmZlavNMsyHwEWAnslPVN67CvATICIWA1cBxwH3Jm8F3A4InqyL9fMzNJIc7bM44BqjLkEuCSroszMbHz8DVUzswJyczczK6DUp0Ka1eNnP4OdO+Gtt/KuxKy1TJ8Op53W+Ndxc7dMvfgi3HYb3H47vFLx2xBmnW3RIrj33sa/jpu7ZeKFF2D5cli1CoaG4Pzz4dJL4dd/Pe/KzFrLccc153Xc3G1c/vd/4aabYO1a+L//g09/Gq65Bk4+Oe/KzDqbm7uN2RtvwLnnwrPPwmc+A1dfDe95T95VmRm4uds43HADfP/7sHkzzJuXdzVmNpxPhbQx2bULvvEN+Nzn3NjNWpGbu9XttdeST/xnzIBbb827GjOrxMsyVrerroLnn4cdO3w2jFmr8szd6rJ9O9x5J3zpS3D22XlXY2bVuLlbaj/9abLGfvLJ8PWv512NmY3GyzKW2mWXwaFDsGULvPvdeVdjZqPxzN1SeegheOABuO46+NCH8q7GzGpxc7eaBgaSKIEPfzj59qmZtT43dxtVBFxyCbz+Otx3H0zwQp5Z/fr6YOlS6O6Go45K/ly6NHm8QdJcQ3WGpB2SDkjaL+kLFcZI0rckPSdpj6TTG1OuNdtdd8HWrXDLLXDSSXlXY9aGtm6FU05JUvX6+5MZU39/cv+UU5LtDZBm5n4Y+HJEvA84E1gmaWQs1MeA3yn9LAFWZVql5aKvLznlcc4cWLYs72rM2lBfHyxYkESlVjI0lGxvwAy+ZnOPiIGIeLp0++fAAaB7xLD5wIZIPAlMkjQ182qtad58MwkDmzAB7rkn+U3SzOq0fHn1xl42NJSMy1hd/2QlzQI+CDw1YlM38ONh9w/yzjcAayMrV8LjjycX3ZgxI+9qzNrU5s3ZjqtD6uYu6WjgYeCLETHyGjuq8FeiwnMskdQrqXdwcLC+Sq1p9u6Fr34VPvlJuOiivKsxa2MDA+nGvfBC5i+dqrlLmkjS2O+PiEcqDDkIDJ/fTQf6Rw6KiDUR0RMRPVOmTBlLvdZgb7wBCxfCpEmwejWo0tu2maUzNeXq9PHHZ/7Sac6WEXA3cCAiVlYZtgVYVDpr5kzg5YhI+ZZlraSc0b52Lfj912yc5s/PdlwdFPGO1ZMjB0hnAf8G7AXK17L/CjATICJWl94A7gDOA14HPhsRvaM9b09PT/T2jjrEmmzXLjjrrOSD1HXr8q7GrAD6+pLTHUf7ULWrC/bvhxNOSPWUknZHRE/NcbWae6O4ubeW116D005LroO6Z4+jfM0ys3Vr9dMhu7pg0yaYOzf106Vt7j7BzYC3M9rvvdeN3SxTc+fCvn1Jhse0acl5xdOmJff376+rsdfDM3dj+3Y47zy4/HJYsSLvasxsNJ65WyrOaDcrJjf3DrdsWZLRvmFDgzPacwhOMutkbu4d7MEHYePGJmS05xScZNbJvObeofr74f3vh/e8B554ooFRvmlPBdu3D048sUFFmBWH19ytquEZ7Rs2NDijPcfgJLNO5ubegdauhW3b4Oabm5DRnmNwklknc3PvMM8/n5zyOGdOcsHrhssxOMmsk7m5d5BcMtpzDE4y62Ru7h1k5crkw9OmZrTnGJxk1snc3DtEbhntV1yRnA0zmq4uuPLK5tRj1iHc3DtArhntJ56YBCNVa/Dl4KSUiXhmlo6bewfIPaM9p+Aks07mLzEVXDmjffFiuPvuvKsxs/Hyl5iM116DRYuSD09vvTXvasysmRr53UTLWTmj/Xvfc0a7WadJcw3VdZIOSdpXZftvSPqOpO9L2i/ps9mXafXavh3uvBO+9CWYPTvvasys2dIsy6wnuTZqNcuAZyPiVGA2sELSr4y/NBsrZ7SbWc1lmYh4TNKs0YYAx5Qukn008BJwOJPqbEwuuyzJaN+ypcEZ7WbWsrJYc78D2AL0A8cAfxkRb2XwvDYGDz0EDzwAX/tagzPazaylZXG2zLnAM8A04DTgDkkVP76TtERSr6TewcHBDF7ahhsYSE4dP+MMuOaavKsxszxl0dw/CzwSieeAHwK/W2lgRKyJiJ6I6JmSy7dpiquc0T401ISMdjNreVk09/8B5gBI+i3gJMAXxmyytWuTq9XdcksTMtrNrOXVnN9J2khyFsxkSQeB64GJABGxGrgRWC9pLyDg6oh4sWEV2zuUM9rPOSe55rSZWZqzZS6osb0f+JPMKrK6DM9oX7euSRntZtbyvDLb5lasSDLa77uviRntZtbyPM9rY3v3wrXXwvnnw4UX5l2NmbUSN/c2NTyjfdWqJme0m1nL87JMmypntG/enFNGu5m1NM/c29CuXfCNbyT5MfPm5V2NmbUiN/c244x2M0vDyzJtppzRvmOHM9rNrDrP3NvI8Iz2s8/Ouxoza2Vu7m2inNH+vvc5o93MavOyTJtwRruZ1cMz9zZQzmi/7jpntJtZOm7uLc4Z7WY2Fm7uLayc0f76685oN7P6uF20sLvuSjLav/UtZ7SbWX08c29RfX3JKY9z5sCyZXlXY2btxs29BQ3PaL/nHme0m1n9vCzTglauhMcfT9bZndFuZmNRc04oaZ2kQ5L2jTJmtqRnJO2X9K/ZlthZ9u6Fr34VPvlJuOiivKsxs3aV5hf+9cB51TZKmgTcCcyLiN8D/jyb0jpPOaP92GNh9WpntJvZ2KW5hupjkmaNMuTTwCMR8T+l8YeyKa3zlDPat2xxRruZjU8WH9W9FzhW0r9I2i1pUbWBkpZI6pXUOzg4mMFLF0c5o/3ii+ETn8i7GjNrd1k09wnAh4A/Bc4FrpX03koDI2JNRPRERM8UT01/qZzRPnNm8mGqmdl4ZXG2zEHgxYh4DXhN0mPAqcAPMnjujuCMdjPLWhYz983AH0qaIOnXgN8HDmTwvB2hnNF++eXOaDez7NScuUvaCMwGJks6CFwPTASIiNURcUDSPwJ7gLeAuyKi6mmT9rZyRvvJJ8NNN+VdjZkVSZqzZS5IMeabwDczqaiDlDPav/MdZ7SbWbb8xfacDM9oP/30vKsxs6Jxc8+BM9rNrNHc3JusnNE+NOSMdjNrHLeWJitntN9+uzPazaxxPHNvonJG+znnwNKleVdjZkXm5t4kwzPa161zRruZNZaXZZpkxYoko/2++5zRbmaN5/ljE+zZA9deC+efDxdemHc1ZtYJ3Nwb7I03klCwSZNg1SpntJtZc3hZpsH+9m+TjPbNm53RbmbN45l7A+3cCTffnOTHzJuXdzVm1knc3Bvk1Vffzmi/9da8qzGzTuNlmQa56qrkvHZntJtZHjxzb4Dt25MPT53RbmZ5cXPP2EsvOaPdzPLnZZmMOaPdzFqBm3uGHnwQNm6EG290RruZ5avmsoykdZIOSRr10nmSPizpTUkLsiuvffT3J2FgZ5wBf/M3eVdjZp0uzZr7euC80QZIehdwM7A9g5rajjPazazV1GzuEfEY8FKNYZ8HHgYOZVFUu1m7FrZtg1tucUa7mbWGcZ8tI6kb+DNgdYqxSyT1SuodHBwc70u3hOefT055dEa7mbWSLE6FvA24OiLerDUwItZERE9E9EwpQNCKM9rNrFVlsTrcA/yDkrjDycBcSYcj4tsZPHdLW7ECnnjCGe1m1nrG3dwj4oTybUnrgUc7obE7o93MWlnN5i5pIzAbmCzpIHA9MBEgImqusxfRL34BCxfCscc6o93MWlPN5h4RF6R9sohYPK5q2sQNNyQz9y1bnNFuZq3JHwHWadeuJKP94ovhE5/Iuxozs8rc3Ovw6qvJcsyMGbByZd7VmJlV5+9S1sEZ7WbWLjxzT8kZ7WbWTtzcU3BGu5m1Gy/LpOCMdjNrN27uNTij3czakZdlRuGMdjNrV27uVTij3czamVtWFeWM9ttvd0a7mbUfz9wrKGe0z5njjHYza09u7iMMz2i/5x5ntJtZe/KyzAjOaDezIvC8dBhntJtZUbi5lzij3cyKxMsyJc5oN7Mi8cwd2LnTGe1mViw1m7ukdZIOSdpXZfuFkvaUfnZKOjX7Mhvn1Vdh0SKYOdMZ7WZWHGlm7uuB80bZ/kPg7Ij4AHAjsCaDupqmnNG+fr0z2s2sONJcQ/UxSbNG2b5z2N0ngenjL6s5nNFuZkWV9Zr7xcC2ahslLZHUK6l3cHAw45euz/CM9q9/PddSzMwyl9nZMpI+StLcz6o2JiLWUFq26enpiaxeeyyc0W5mRZZJc5f0AeAu4GMR8ZMsnrORnNFuZkU37mUZSTOBR4CFEfGD8ZfUWM5oN7NOUHPmLmkjMBuYLOkgcD0wESAiVgPXAccBdyr5WufhiOhpVMHj4Yx2M+sUac6WuaDG9kuASzKrqIGc0W5mnaJjvqFazmg/5xxntJtZ8XVEcx+e0b5unTPazaz4OmLVuZzRvmGDM9rNrDMUfg47PKP9oovyrsbMrDkK3dyd0W5mnarQyzLOaDezTlXYmbsz2s2skxWyuTuj3cw6XSGXZcoZ7Tt2OKPdzDpT4Wbuzmg3MytYcx+e0X7TTXlXY2aWn0Ityzij3cwsUZjm7ox2M7O3FWJZxhntZmZHavvm7ox2M7N3aq/m3teXTNG7u5Nox+5u1n70frZtg1tucUa7mVlZmisxrQM+DhyKiFMqbBfwd8Bc4HVgcUQ8nXWhbN0KCxYkU/SS5/vfzeX98znnqH9m6axflEowM7M0M/f1wHmjbP8Y8DulnyXAqvGXNUJf3zsa+5scxWe4lwkcZt1biznqLxYk48zMrHZzj4jHgJdGGTIf2BCJJ4FJkqZmVSAAy5cf0dgBVvBlnuAs7uAyZnAw2b58eaYva2bWrrJYc+8Gfjzs/sHSY9nZvPmIu3t4P9dyI+eziQu5v+o4M7NOlUVzr5SSHhUHSksk9UrqHRwcTP8KAwNH3O2lh9/kEKu49MgXf+GF9M9pZlZgWTT3g8Dwi9dNB/orDYyINRHRExE9U+oJWJ965CrP57iH/+IkpvDikeOOPz79c5qZFVgWzX0LsEiJM4GXI2Kg1l+qy/z573jo1xhKNc7MrBPVbO6SNgK7gJMkHZR0saS/kvRXpSFbgT7gOWAtsDTzKq+4Arq6Rh/T1QVXXpn5S5uZtaOa57lHxAU1tgewLLOKKjnxRNi06R2nQ/5SV1ey/YQTGlqGmVm7aJ9vqM6dC/v2waWXwrRpyTdUp01L7u/fn2w3MzMAlEy8m6+npyd6e3tzeW0zs3YlaXdE9NQa1z4zdzMzS83N3cysgNzczcwKyM3dzKyA3NzNzAoot7NlJA0CPxrHU0yGkfkDbaso+1KU/YDi7Iv3o/WMd19+OyJq5rfk1tzHS1JvmtOB2kFR9qUo+wHF2RfvR+tp1r54WcbMrIDc3M3MCqidm/uavAvIUFH2pSj7AcXZF+9H62nKvrTtmruZmVXXzjN3MzOrouWbu6R1kg5J2ldluyR9S9JzkvZIOr3ZNaaRYj9mS3pZ0jOln+uaXWMakmZI2iHpgKT9kr5QYUzLH5OU+9Eux+Tdkv5d0vdL+3JDhTG/KunB0jF5StKs5lc6upT7sVjS4LBjckketaYh6V2S/kPSoxW2Nf54RERL/wB/BJwO7KuyfS6wjeRarmcCT+Vd8xj3YzbwaN51ptiPqcDppdvHAD8ATm63Y5JyP9rlmAg4unR7IvAUcOaIMUuB1aXbnwIezLvuMe7HYuCOvGtNuT+XAw9U+n+oGcej5WfuEfEY8NIoQ+YDGyLxJDBJ0tRRxucixX60hYgYiIinS7d/DhwAukcMa/ljknI/2kLpv/OrpbsTSz8jP0ybD9xbur0JmCOp0sXtc5NyP9qCpOnAnwJ3VRnS8OPR8s09hW7gx8PuH6RN/5ECf1D6lXSbpN/Lu5haSr9KfpBkhjVcWx2TUfYD2uSYlJYAngEOAd+NiKrHJCIOAy8DxzW3ytpS7AfA+aXlvk2SZjS5xLRuA64C3qqyveHHowjNvdK7XTu+2z9N8rXiU4HbgW/nXM+oJB0NPAx8MSJeGbm5wl9pyWNSYz/a5phExJsRcRowHThD0ikjhrTFMUmxH98BZkXEB4B/4u3Zb8uQ9HHgUETsHm1YhccyPR5FaO4HgeHv3tOB/pxqGbOIeKX8K2lEbAUmSpqcc1kVSZpI0hDvj4hHKgxpi2NSaz/a6ZiURcTPgH8Bzhux6ZfHRNIE4Ddo4WXCavsRET+JiF+U7q4FPtTk0tL4CDBP0n8D/wD8saS/HzGm4cejCM19C7CodIbGmcDLETGQd1H1knR8ec1N0hkkx+Yn+Vb1TqUa7wYORMTKKsNa/pik2Y82OiZTJE0q3e4CzgH+c8SwLcBnSrcXAN+L0qd5rSLNfoz47GYeyWclLSUiromI6RExi+TD0u9FxEUjhjX8eEzI8skaQdJGkrMWJks6CFxP8kELEbEa2EpydsZzwOvAZ/OpdHQp9mMBcKmkw8AQ8KlW+8dX8hFgIbC3tDYK8BVgJrTVMUmzH+1yTKYC90p6F8kb0EMR8aikrwG9EbGF5I3sPknPkcwQP5VfuVWl2Y+/ljQPOEyyH4tzq7ZOzT4e/oaqmVkBFWFZxszMRnBzNzMrIDd3M7MCcnM3MysgN3czswJyczczKyA3dzOzAnJzNzMroP8HpXO6qGKb7mYAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "1.5293678516346076\n",
+      "1.6\n"
+     ]
+    }
+   ],
+   "source": [
+    "plt.figure()\n",
+    "t_space=numpy.linspace(start=1,stop=4)\n",
+    "y_approx=test.linapprox(t_space)\n",
+    "plt.scatter(test.tvals,test.yvals,color=\"red\",linewidth=5)\n",
+    "plt.plot(t_space,y_approx,color=\"blue\")\n",
+    "plt.show()\n",
+    "plt.close()\n",
+    "\n",
+    "pre_image=test.invert(1.6)\n",
+    "print(pre_image)\n",
+    "print(test.linapprox(pre_image))"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/ErrorAnalysis/error_as_sparsity.png b/ErrorAnalysis/error_as_sparsity.png
new file mode 100644
index 0000000000000000000000000000000000000000..a1c8430918fdd7f33b97293067a7a3e4844abfdb
GIT binary patch
literal 19559
zcmaI81yCGOw>3IQU~qSL4HDdgORzwI1a}+U-GT;9aCZv~KDZ@VZ~_E(4Nh?9HQ&9j
z?*HFc^`N?jX?l+JK5MVN_U?&NSCz*=B}D~+Kp2V&G8!NdTnKQGf{}nT<m2k4zzd?Q
zl;Q_4@Z$$Ij|ASMI4OK`1%c3TUk<p*<$wp^q>!8JM>kDJOE*sw7YmTRiJOz1qnn+L
zDYb`%i>r;J1N9pY;Fq1++Re>Ln3MB=F5qx<vEmHRokjzJs6mP{k{`UX4zoS|K4>ir
zbXi$yD1N37Rj1QZ$LAtcC#r?!McRiEkySv}-Irx+EA5RM|L!js7!VN2;`sikf}E7)
zGc&VNQzwM-PBNvBjCel_CUTK54$`Nm44yyw9a~wBiCwSkjxBiyT#N2z?Xp7oLa4z~
zCw;g!2#Au{p}%OQsKFr<!#Fh9h?0M|BeB6D)E6!?VBmi~LbQm$wH@R*@cHujNf}j1
zx`jz~Y{d;4telhlurLkQakI^Kg+*Mj*k0QaW{#^KzKuu$ie3>0cIeypN*3_r@R`BG
zK}dPL1#)mo<!nKy(921M#YwG#%Qg&TrSkRemTutGg2EymiVQe3r}xKO)KgFB<@s0s
z{%E!!m2QpPGyAu=6Zj6FTi-SWH04vHIQjTfVm?sS5d2M+qR!7}e#?@)l<fXPSPrY8
zYZvyWKpQcVpVt~{@U@Wv<TLGg5UVltJ?RTpL+7r5vxj~?Q9dk%0gN_*+)Ogn;DCr4
z9EjlWzwZw|1oeX)L4Ud<a@?aq7|QUJh)N@B({=VpPSsZTa^tm6sPs4FX605A(m|!c
z%iSrMhZ0y`i)Kv-H+`;^A98)P*L2sA^C-(e+Hk2zrxe-fm7qr7L(Z!?Vd^0JCZDlE
z-`j};zoxtS9cHzT!uFwzuFZel2016qlwNqmJ62Smy2ZK)<40w?-*pG%Tz2yBS?UFe
zj_-Pl-;;0EdZ$|Dt|Fu&e2;}#l<oRf{PSDIx_jC=@^hpx<T>(hIy$^|GiHzzv<;>T
zM)u#gUPD=vF~%@P4nTUEi#@2m73jcjo^%x-+gWYK^LTyMo;%y`*bHv&Jr7V4nVsqT
zdL{PbBRwxZVv+_*w{Leqx9Lcq0BJM6pfU^JC&=<&nBtpLj-8)fxThUve&m}@PpB7{
zLj5wvC_C|&Y-@6A^U4w>9Vm97Dg<0%!B`37pJdm@p=P*F-2Eo1=ijfb#_RB#@e~mI
z;pE}3J)L6Cxz~SLeqAIwj}ZUB!uMlW<jew&ivk$Ws~gNsg|;EOwDSkHglLo#(O@Ag
zP?E-ccPg=bJ3gHkN!rOKbv(wdG5HL~8sm5g%${NzFZ!9BIOw)B07><yUn*VD>b>2!
z(A#AR_$qitvw&2M5yw@=>}E^h%VpN$IJg`HaU_TC(9ZD9XVR=SmOyMT{2L6XCJom2
z5dR9Dj<?lamQRr_DTHRB?PZA`eCM^hS<hSZvrIW>j@<bjBHXl>E#n@$rg!giY^+wr
zA{5x(v$J>qNoz|}6yIhtJ0=a-)w;?rJyZ+0s{d7gjB(W|@?bRH8YaH&={=-&#;Ui^
z;#-5aJ29X(@165VzN6KM<kb<qn%HHgd`WJm3R)aLpB9@b^<&9)#A)Bsyhc^K6|Am%
z_8L;XsCV4H3_uPz&igk-3wqjP5n1*%>W<Di`xj7^{7U@Z{}nUJ+Wr0r-{y6jy;+wh
zoK_I@v(KpK>{Q3l2AAjI<=ZX}{lL+#Jr3#)GQb4x{3=gQwqOoICGKDUYNdqQ3`+b-
zewO6rn3TsR-vPbq=2R-L+<A2aKSeIyKhBTUP~U|N+x>FBVV)P)anky{2U|%E^t5h4
zhPqP(X$%!4DP7M!*IHfvFx09DdQ8$VLs)LgHDfORkg-d=YVu@_+|=fL`tR{c;<P;u
zbS?(60_EC5jjosH#!v8=nGiA?W;kyS5BSIBSKD+1P7|o~>XS9f;m9lMXO*cxm`LR_
zA*x@?LoYK&sTyWf(g;7`_QMIJBKth@)$2nH{$RAhZ{tu?q-|??kR}YRd`9qLr$zi>
zVx*kdF>S^2L;v*Ae_!XOC9-3Fqm&&BZ`bjZV_KKUgnUmN?sx#0sdSRYi7~l6L;q8*
zSjD}MRtL^G(~Tj^WrxPTcyUr!Nn4j$jJ8roWJ~6E)A8%1b=MfDn$g{JhjEC+IE23+
z&W~(sbI0UP$M1IKeE(h~#Tt4fZqeD;=vg^t$P;|(I3m>kJ&E;$l300CMn%$>bIofe
z2@44yL%q1wsDo;fz*!HgL)4^eZhz)o@8oQ>L&TN6{(wT%JvuNZ;mGoH?&8O;#ohW7
zs>RgCnI?Cl?+YJie>;!#TW(Asr=dOBj#p4jaX%0m3ZUyAsEKY?sr4@X&PLV$p5!9~
z@s|`CQ0VJz$qecOk#VoX#qLcUkEtl?twzJL?H5P~3*nbMJ*^#cI}aAfoVOqltGGWi
zd{h50VI1$3R1o8k0x-z29<ZEX8v9@<%#%tnV&Lz{<!+zhtOwH(DsW0$NepQzFKMXH
z&v5|MWCLB!UN&l=mBJ?Hha=HF@Rat7fp)Lws5YjEh!#(SMzRlP91eX6OAzj5pzgx~
zfT28ST{T$dAm)5fnhzQXI#1SUvV}e_!-d?sVuDI+pb{6ta=6Qm7>5pKR6T9A;~L5p
z+d-gxkN$jzR}W!-`hB2SgnB5y`8HAhwI6*_S9;`RMC2oy+FOX}f|RvX-d1&L&Ke~g
z+QL2|w;6nC85BXIQ_?nNW=F&&MI}^&GfUQR_1E$07xbJC#R}Eo#tYcFPcqtubyo1M
zy5AXM1)f3wl3Y%P@Nd@6dW$!D=Gaqg+DcetThJwxBnkf-9`jPRvPnH%IugSo2X5|h
zn<2}#zkuPpHPb6rE)5p<@8g|S7rIpJQZA!6h6t3}zJ~tQ!Q3mWxlGFE$Rm-NJ7lFn
z)m_vJ+bXW_ew;Y|#VN(&TF-Y4O4dD~di--#t`JQvxCA!>%28L!4n@I(i|LJlbOs-<
zN<JX-Je*+`Pj{w~B*>d)bXI$(RGks-#NUQ%?9+@;xiYSu#KR<6E?G|bEVufJM-m38
zxO><ZH+V)2uHF<+cX2%;%9{zp54V|!5Ys#%*GRFrH<cdRwMrCT3oG9o5EM@r5|@7a
zQhU!b!ezv@+BdIM{@l~s3xUnp3(e~V@dTG9X^i&BtM#I<wi`h@s$!2?rOK+(pP7sA
z%)(2aLee45D2)2&1!~JD!KKL>SjHRsR`3z<vk)kosJpQ1<Evo~$IhNmmR+`DTkdnd
z83=UN_m4OJ#~trLMW&-K0kmRvEZT%4UUvt<mub<hxHm{VQf6g39azB>_J?LTCF#O-
zv6m#>U0i|8$o)|dv5ibgFp-!st4uR4vz-GjOkb9go@vjrWmp>bAB&vxr5KV|-|)J*
z8BK&&zjLo=5ph$5>jf9X*-6CnhYOna4-gqMsvLFmZpY^ztrybyH;(r_Z&i~kGi`Z{
zdm4h<-yWEhd=8ow+bu@1lbScnIcdS+ncYNPNK>B~yG|hL_9XnvH?`w=V3k{H7A{Cs
zYjw7T)-99klQDxgM9Q_E$JXlnND(%kaLBO$`!(KpAh!Co>ryf8xq$)?DXw`OWv4)t
zi3J>j{UJ$%lxO7p5a37#qKW5Uf|_76&v-VzA+Z-Y04;MHapdv`$IC1vs8jpDFf;qS
zBw^AitSc*JFSaB)1iEl=FhK1VA4mkrd9XM9C<<%c_UQgY>n<V*CAGCv#)gNZ8%Tgp
ziha?l&`!32){A_fr3<Cz<ctpq2~o(T0hnN+y3*~=^jUNaDenIdAq1GCVcdVZ<CG75
zi;b9{N(b;rnv!<%9B(9tR+h;Wa7ds}Z|EDzzlzQJ>gpiJ4vUoPPWUFWyXy$H>d??o
z1wCdk6kwg9)av@^j$QWT&w<Zq1O$2b<UY&~x8qJfQ4(^ov>`>W2|_zwF5{S(M$8TD
z+^q^c($y3<24(rxIX?_gqNQj1&lOP1fN<a?!3p+@SAtL1E1xq+Yv$KZd)BF*gZ8G@
zgAkP8y~Xyy1?cPql81=j!#~R1=N_yQzd5cnk=dn7Du3RhV%Zs0$-f-HC2KuA<K2_R
zr|S_D6UM@x@xrJaopXZE+-6%<Mv<=pX8a@Ce$jZ0e9kIYEbdvSD`aa+L5~rfFAc0i
zyVnul`Q3~jmyesdJx-_-4c-uNxsFlT`$8GS(3LP?#k|U(VOZip={$7yQPiPCz_3qG
z$3)hgx)qsZ7jPxPoWKx3b}Q%ttLS@sPQ5r^8|AQnMuUSVDx6!^#zagWyl(cGy#CTe
zMn^Yjg<u<+PbW-3ZjVKp*Who?-r-^TtichB3QlUHNZouT44yc!whifereIVFQOR5z
zWLi(wc^OD_131)B+MQ4I47}uuWw(r4Z`IRropCV{GLZ=^wrLJjZ{6rQB!Y@RY9me*
z_qdD7awM|BA_SWP2oSi3iHy1pJb$2Z2KB*P<)EY*Ipm;GgMU&2Bt9*#3bXSTNxM3n
z52B2G>bWW@7w*kEcM^yt9WJw=BpInH#fYd>PSd^F4eG{VpV3_{O!7e@-Yidn`(O)Y
z3LV0vxti-(6a`ye?gOhELG>0=FU~gXhG^u1GLnhR!h*x6gI$oL-U!a>mV#c|7Jp!^
zQDV7_oAL2*eN{Y7@m33LkL^RvL6npt_5OE`#jfhjmEPt}lij?g=c)1Lh1Ga?6yE5)
z<Y#)725PtP1eD;JRxtBfd-Z!Idk_-bDgtvcz7wO9TbUhpL39b@91IN=O;5yo)nb-|
z4yiMS*kt3L$iO`7sW<A)hCFtN<i|U3l7@G;%-Xx^4Z2_h-GkWm8c8r_Y^=JLMas}n
zw;>zrNYC={&{e2o#`__`^CkUya<8?V>(Sxv;GIw1C@5crtRy4dr8s~^!C!l23=C%h
z^5+?(2CH9|?Un^eM_^)<$F9GH;LQeHYT<3D4?UaK$~3lDjdk%j2CPm@JbANPoL!om
zA9_=Wlb0yZFShLNkmA$~CcKi2WTtsUV=dm`qOH+~JQnD*U<hIemO<@dGtt3)pxfKq
zR;bVKm}Sh9F2}5ANOihklLq5z$EaoRk0bu-&Uehii{H@_(&iSTu8+{Xy`jSkzAB2`
z1+-wPahjyUaQqs?xjb0sl+|TzH<s=JMZR!A5i@(}tdYRj^Rj0waZyqCzky8AYaUA(
zM}0lWo;gA2iUPA9Vg$l2=pac0B4#mb16>8}OsIY=W6Fn-44y4O`fsasErud6cu+<y
z$3n|BedYZ0WPqK^luyog!Ll|Bvxe@5?KiLIbyBYQjtf4|8uCCv#l~mmiBkbP%5#nq
z&Xqv)ie8k-@z&#bY4c{)f7UIdq~vFHpuGn1cpBXN{MSYe0Ibd<u^WOH?WM#=DLN{2
zGSAvYn@@j=(d6FTL}ma$JYg>bZZE4A@Vu|?v=#P?{xSki8%zYigljBtNf6~0fNH%9
zADX#ZGqqp49oJW(eyV~dYQLD+*e116L#RXJ44Duenn>o)_bV(v9gvLk`U&d$)wUc+
zoGH9~c*6HDft0$=tnikmzMYh~W=S`+DMRGB){J3`4v5U@OTyN|h>QnudD@z4aV95~
ze_8D)pR>|X0hmin6!NEHy)@VO$#3%^UQkL(902o9=A%r^H>iW-<Fl_`y~<u0TMue}
z8Ksn!*Ty0faiUQ8XJiU;8_iIMf+XEy*zxIlC3iL@ySO2+w8A|L8!-LTp;t=}d!t|Z
zWx;gZuK|?Iod493n9-jRbTBJyoBsG<SNE;n%WJ2Hra?K9AAmp_q;lJ`jUZ&KwG7W{
z6tB#8tIbI&1esoE4NQYdDPQqBPyk$ulstaE3t&AY@Vgr>h5HlukU8KD94-HJ1m5sD
z+D1b03NT(S<K8ECUxJ-+un+z8EM9%T`eD`Kk!m<#E70iKD1h%!XX&(p?5BA#whDkf
zQZcn&e@ut=hnszd{xrif`D7srm5Xb3#$#x%3JnZ(4-MOM?A&4n`ql_9P1BHOVJuzU
z+A9xd_ETX#B7lsD0+uZwD^^=FV11BJK0_Kvr5Kp0=~78FXPjW}-a-gvaam&|ld5mX
z(zHHOF=j#D#4~vofkfq+k<nxHs|b#@qTftm^BOc6353Day<n9pMu*2kZAPq|k%o2~
z&=%In^&;&}@jlU5;H@9#kXWQ%TnEEa3F`Y7-`ooxo_%el_lLhq;>;(>igEh~0@hCH
zS#FtKnO*s=n@IZoPyLJ~6;c2GDf&5|ZUk6Z0xjTGxr2s}Hg?n;EPn=}j1cn`7Pkwj
z^zIk@d2JCbuHS35D6yHJNNH-`_0^<FD^mPFcgO4aes}I;?N_q6_WWW#kdykcB*?F0
zDl}r{{#MN4Y0Gjf*Gb%UU_3SwDs@2v^dUyx<l#ESB*4uNVK0pngZ*h8*-{R_rWl(I
zGt$)1`8m&-J(^a@y(IFu0{+A%L-)p30ozBg`ss%C;N499;k3oa>6L2_WGvCN@utAB
z7S8NphkJ(=@q7Eb-s`BKVyOn&*YJ{me^^6r@0kLvyjIso<^$tag>Mng=M6iun*_Q>
zmzkDE;e?Pw=apy{0LMjrVf@r~+l7x$czQY#v6w~R_bX2tB<O#*r|&n>x6Z2uctF4$
zuw)^ltKv^&pQn&qkArs`Kb=J8%b)(Olozr;w1EnLdzGJ_5Eh=K0R(we%*Fi7#hsc;
zkG~<y7E0w*V%yK?$rvHn!+z~YX5x!aBsyv>8D5aZabp-W+BxG0-D{fHF*7J)QUBZ9
zU?w1pz++D63a}R6MNA+`Mt*X*+hV-C-Wxw*eB_uc0gGk*Z^uFe-((FX6FX3nviMBh
z%j#(7_t`TbAR>_RUhUh)H(L9+i5`^UGMeHKlw3GBxWpJhJaMPNa`{zb=mf7WS%ZkB
z7&S@bRdI3gI+rH44`O_!cjzazant9gd!FaD+pqlck#PT~4<VgG-9sZs(tjmd@o-^m
z10{k$&tWsS^Yioh{F>MWl)%ki_MLV9!A8XO+L1K(=}J>$LzC7%1sfsMZ8|}N6_XBr
z7&gP{^TiXyX$$2$P1YE~Fo$zl<OJIrJJ#`>Y<r8|FW2ky?$I7+I#W5%G%IBOadm3@
zK|58lK>L3<2go1PHEXr(-)}|L30XxD^GjcB>32NUX#J|#u>HVt|7RvKW?F1!-51W)
zdH*wBLT(|Wj3McDNKde9kh@YjET`@uNIpnDN#g(x*(s;g9S|$A$dm+}HWHaMKIrwH
zcX{Vb4P;Z=B>G?)1prh8)5s4FnH=Qq{<V?W7G=9EUoE)NvO0_6`zERsyZXHP;7iYZ
zCx+7Pd^uR-_X*O-RHQcbK1f{;@Uw<!YT_tDLZ`XU-R<7SFu8@gGFeMPG^wODCm}D$
zlpg!N2g!@c$5zQPVy69yt~a9Rq~o02k(GeKoQ7XJ4Nx%ByDht)mP$z4+7`Wz_IcTh
zA%M-h?548cTat|XU88Sbxd2$&>@*pc<+>(BE_!OLi1r(YgNWS#RbUC!*T?0_vE;{t
zPDW@m?1K(aL2NjFEj!cOreSZ>Wjwp@b20_5zkV{abiRVKIzPbaN*P;w>;3HCyn%YN
zLzX5=V(5c{DZ)OfeJS|TcgzRA58Tg}x1z8o7W^+Z_sW~CbXA)d&ZX}-^2UstGDV&V
z*haFSr__4VtwI`dT0;Sl3XKZ+32!MOk!hd219whD<;E>N86mS!nKQ^%O^nn0Pi~4k
zi{6I6^)omal=jixM1`i}i+1gICxVxkDsu`#3!2w7vC}snH1ISOW7X_0=TC%luN51M
z3@LVJbX~89+FEv&A;bx9g5r1ld)KA0;u}7RWhS%5o_GC|i%jIw^~9n18|EeQ81gfO
zaJQ?%fyj6g&_+pzairtB3)rW5XVf>#@+&)IUbi&?f7!60Ax767GT=gGiaOlI3%=pz
zZd^OZ{8sYz7wYoAZEC-ps>l-EF{jMFWPbd1Cksqud?+~~my;HoUIuKMWm&qqak}Vq
z#}p$P{MiL-BQF@)*?24%PHbuhx;!nkU*<fmzWi~S7LzYFXWTGk{jufN|Gmol3VVYE
zf(fDG-qMCu)PMCHLL4MeKGImdHa$Y9UZ4lWGr}F-;KWVD+v~C?X*$_y9Oc?+o+kBj
zKjr;|wOuIS#Nz`Go2#&~X%V?YXEL(+MD(OYp0b{r51kEM?w)Fxqn(>k%F&f6=Ij^A
zvM_w3l=9%~p)PtAcd=Fd4)b{I{pNA&=jRf;z<6aBk|_I#w6y$;jK*KJwD?x**CUZ*
zl2G8w$bfyApRxiZP2d>Zcm84i@VLvDW0BR+$5nJzyf~S9v?37FkJE<NSp5*Mff`-c
zz>b<bPV>>Rey)gM;#EoICxkU4uyz%1H7%l~bZ8#(+QCI;k7%cA;N7o1v7dVppS>WW
z>4WL!j8<|B_%w5s`Y6&7Kf8}%Qek3|*fJz5s;eSZt0`0CRB7YE2$=Lj96~=+(4^8n
zwrJ=gNXms$hw%RAE^E_J2C7N~8jB-uQ_`y%{awZ<_|a%T`JUWd2K*CP9Ev|8y0KH&
zyBAh5874nPHZES}^D!`-p7!i?G=M|CfF;4FyB7dYXNC%3nbb3*-CLY6sTyGmZ@^~P
zI<80R9I{!+gz*_wV=4`}!@-i+Wj2-T9j{N)n*+Y0oZkpP;>qVS1J^GU=Km0t+3C1m
zn=@0HA4yM014mFfy!k@uimsf2*f{5DFgkvKI#5<W_srkZeYJm-bvIJ}F*(_JezSKE
zO^RAD+tT#oImNS8E(v#y?lt&_@5zrO7CCeulFQ50ddtzTF=W@gk9QPQlV(xah`~FG
z(l0YX$WlG;tr1uajTaC3&Z;RMAgb?zLhjG2oNbE;@1&L)UYt7CQ&#>dY^o(QH1r3J
zL<%s28r@1|$~QujmSCw1*CUwI{SlX6vm%-Q2sf8K>BY4~)I_m+H6eU-G1lOqnN$Ef
zK!vb>_PpaH!AX;#dU`ww;&--Haa3W`(X9WHl!U@eaA)=UI*T_BAkX^z_HVEf#>XSt
zj#0hpkx|iD+y$kqbdm~S(F+TFMI}2C+g<=HQHK(?QH%-pxWP+Ylhe~9w(tEM&75B$
zra(dLQS^VrYF@r9DhX%$lph+7C<%U@YG9ee@~{9&NS)mq-Sjb`l2jRG4XQy2ZU7QZ
zV2XHg)ORV}m$N-lOdd8wjfSj<>-)?|FQb-{lnvX%?_7iDVg1V)xOZ0NQ;Llr3N0iC
z;7t<D2;in6dZBz~``f^q&)&b<VF#Gdrm%2j`F{&F?)cImsl22*)?$v6!?@)CMFBKB
z6<A=JEU=mSk-uNoL#Sm)jQlOW{V?$3jv=#R3|saWC@O}v%?rR_?fTj?J9jHHv|vwp
zZbWKCT?i3Z1=_s_JQ{4qEVw7=U9!fe=)v)%uG%TPqnpVp&=y*8vD12(9HPf@==Shv
z<vIc;*!uid;<2|_;&B>i3s5QfUcJ2${z7y5UOJbh_!uDvZa)KPuVQiGEyMs3-+N^i
zU@M@{ttJ)J;NPLcudu|yfO`PkOdrANu7u|t{HbOA@)*&dKjuCRUtPVwLHY2kqQ<~i
zDP&D+-`%;-s=i7tJ2s1ap>d)~+wgv@&`C#%!!$ShZ+;<2egml6`gx!!+qomF%;=zK
zP&g(9X<j;TU&F>FBHnR^!5}IDd4Z3^p`V2Z@!CA#CjM?eWG)?RyBEM@)$dGMS`{OJ
z-8ugr9nOOg0xiA$1WyqB-vKPC7l;^6xx0b**m^T98lWAz2M>pbhe4`x*rC|<kkoV<
zzngV+ZKQE=w3E(72Am1q`pRZvP(<pv=S?HHKpouh&TQ3u;63@$r*VfSo<oX0>^yAd
z;>lzUPu5~o(P0Xu@(WO7bWdcr3-mG?q<dhX3rU?>zz{_zpUlR?Mx;S+)^|GTu;iUc
zRLj_MCgbmR3_vh&n`W!1m|vRct_ejX*KOKbbv(lfv9`nEwS&AB;jJPisuI?jxFU;+
zGX?wI{H1$~;Z$N(jznqih+vUZ^53y;h3IU>LV5Sy7%@9oDs8@<Bu;opl*#MN{A1UO
zC_N)Xv0j@&BZMf55Y1IIT|V<w9#d%ee&BaU@70g^?fAqn*n0N+CFMMSM7oBVQeXe4
zXboF?<VAAKEQHGQ@4ghL5=!MLY2x9~?!N3A9qdr2d_K_&Y<=%yZ`!%d_?~$y&z4tf
zu{}pS>ECcw2Zw0c#<qy;-P)p>K3<_>$eNMb-m6`uT*sLr57K=;C;z74hA+J)Wvrt_
zkq>*qe+z76V@F2>HG{yeJai(0P;0AQRUWpRqo(!dP34S88tIV6dx4?hawlOSCZ-4#
zk4+_V`_S-$u(PHiMG^Yg<^X4?E@E84+6A69biU(WOhfa$XW>11a6~u<+_8?5y_S;w
zt7GZotyeTx6AL2<bAf?3TX@aS0dz=`_;6e%`A^Qy<f~1bC^_r-u{j9|j@HbiPJdcH
z3YbyIViCa^KmS(U5a0Qip3HYr7x1|E+MnE@xTGZL?(Sr8Fn!V9SL9v9Yxv@%SHy)d
zadnntq&1R9AX;XBuWNgT&~X~Fhvs$2P0YvoH)4Kyx)-v&Jwhdjo!KYV&U7&)>heo~
z7ayY;u=wi><mu-RYIit$ybg{<{b%BQ7MvSy+So*?^V??lL=s>6z9~FE)ql3|=tg`~
zKZo(Ka^9&6#L1@UO^aIy3xR=N+XOcQ63P&2L|V|Poec{nRLH6u6eRXKgc%c~Wq<Tn
zUdbe*z6Vik7w@-r$2b2FHf&syK@)Qyr!ODdNSRr@zf@LE)yxZ%Cy=<oAJKWqv$!+(
z(p}vT{lB#U<Lp)7D6JP2p@cCJ`R`_YY|rx{PvYx~ZiMx0Pk2>~-&!dIL_GXL>54h;
z<)bKR$~=T)z26g)x-5#BR7^4+W-8~(o&7c6aNVqBOJo{cXNJEznS2@^Hu|wwY2F>=
z{e!D%3Xv6Y*VmBql69*4bS(o|$BFWa&j1ITdfvi2?_8Oh7qZ3AazRzjMs?kJ>*uGS
zay##^TfcAXuwq4(#6<5_#>CLKNI*cIl|q=DPvhCaWT&-ZO~ReTD;#wL_iviP3r%vC
znIj-6G?eDzh-^Z1IS<d8>c_n9!T3+(cxv!+aXY#Aqg(u@Q3q+3YR$(HgXfa~WO+&y
zd2+a%Q|0E5$BHc60!*dFcIr~_nv;`W`IRwbXJ-XGyymNTq_&hmN32mdOI}Ngj9imi
zG}d-Yin4uyB*GU9HSvVDCDJq#x@|x%2_doPrMGO0`ztZk=R~!&wi9J<KT&cQu)ce;
z^Mhu|Tc4ZF@lk8&Ct%ZRPEC=dq|Mnblg!WS*Lw40?jPtCXGRic=pm{Ut4u$CRD0<5
zvSZ=jaIsI&Mse$i&ujJ~S&RGl5e$!o@u<V%E__;Wd`!$DiQO7EbGjMdzb-Iv(`3(c
zprNUPnb+bPyD4#FeCpi%b*mzSlz-t!f0HR{YmbuVWp1^DKhm=Zlr!$ZZiyv32c+Ky
zh{@~`j*NMruObSYr|$pgYU;NqU0l#9sA4*twT@wzVe7-uBXAUdK(H)Go6$wian!~R
zt;*-a$M42dOQUzpk+HuxaU_4*PR*P}z&e~s?3Nm>+c3p_O*nR%DC1&nN*hsBa^`2l
z68Pn(UC(G?IB37Cn(0wts;+M9m_%kic|zU&GIj1q;*Hy1t!05aGQeQ=x<7S`>mGEm
z7Kg*PP}l)R<2hH?r+n<Qfii`vpb(U(8nQPPyGg~z%DhMUGZ=uWJpiW0M(CG!R*$m2
zW{>`ncpg!^ybPF?|F%OY$un4}68+XfON#EJdlv^vaJoo>vd2}rWNm!~(AhPD!^k=E
z(-+0J*YHkGk%zdUD~hsVEeC-cC_I&TBat~k4uNMZC?@9D!mRAd_p-dDM2&*issQVn
zVqh?7VCQPrLo}8{hfC-rQ=(oGCyY4C96Oq_C@tEusjF8TuzZJ+Qf@%2P9yjMBBsa!
zLwXD8&|@K3aJCGY(6hD<`j3ivIXf!&?7TVBTh-!9gDTCCZ82YEU_Q|I?;zlDp^`_G
zB}$QnrLqc&QD_nTTRXaYc_4<k?uar>?3QQgSdKj<H0bJ+b|ZXhMFt!~0GYm7+uJ;;
ziK3BaMhqZj+TVapE2pW6C*pCKm!D7b%~B?`w^s%Ui&8m@2~s$L;M}Gne}bph?K&>0
zl}s|^J#WF-vm1&c#&|e|ldPiBuB+WIi-7ELGdIXnS6^rdPEvtwk+`(J`vFxi7UBZy
zSG5L(b&pUG%gOamC(JF8z!QY{2B!u+DV1ji@dS}cS!#g}=W0JsPk%T&JJV$>xj<@|
zNlHzvHygmbB6-srgAqSz)ruN$^W?kvkjfch6c8-#zt%9dmgPD^M^)Hd-&7&0qpMUn
za}*wyAtWY}dC+Kw@>wgpN9#nYkB$8w;RbTQSrpH+P(&f({u`%MG83nk{m5uY+n*_A
z=^hV{lYmr{9*17#KVR7401e)!MZ=cB3Ei@Hf<^ZLg9cWKKuSvLlMMzj7ylX=DQalI
z=V-@H;oy_PCYpW1rCN2)R+w$lHQV86CXkgqy_k{%X;<^_dO!SQyx@VP;Cv>w1a4J~
zq7tnHY*X;&@0NN0^<GbFYb)kKI9}6oEW@CbpNHS@#QUI<5?uDHfMz9?gQacMkz<24
zN@QLHq%0y-R}q!G*YFK95+I4ti4@hTMVY+xlymXR55I<axVPg7BML8fTU*EM@v8Rd
zeqd)<V|TO)d+jl7J^-3?Xvo?5dXBI0l^uBPSdehew&`3^iy-h?iRCxW?$(ymB|x#}
z>c-ZqJk3<<>P{y8YcCf!`6=QI=CVHV9=)+}@Enk;u{!Sl@a<ax-8;2zDQX!Srd+!e
zr!^OM6(^|<6*Ic&8KllwHm~tij7UJdJ{A@{V4w3`J*5;u_4=8pvB5sR$&6sKo<Nh8
zlRX;A*@d3`DZAgo(?qc`A;9Y(eO^U{VQwz<&U8}=!3O7pPGH<}XH>p)HC7bVKr%Fs
zjJddZ;|p8!W}FD9`SEJ8916AgT_6j0QrOy>QEN8fvR_{6vg&^gS7ZB!b!Rj)V%fo}
zKZaz<bzJPL<KsuDWmG}>cLS+|Q!sva?LbC)=hvqrS{YZRD5K)i#MC7GQxC#oV(g7A
z&+I+}M=9w}L2`zoxwuf$Dak_@cTwbmvcK=yQ^d`!a&g>5+JN{@KtVxat&hlPYXMTt
zz{Xbb?!Nh7KUumk?6NHQ_I$VA>z^s6$RU^INZJoQ$Bw>>y{XS8b$LlBM>6S!QL?DE
zwl{+gyWcrPmq$n~Huf6ZY8ji3e|ff$I<<U{QX>Un>>!mFP9zL#$=mGJUz|LX*)=95
z%rAa2l>!s82f-kp+s0Aw){fg2tIg`?oBtL>Hy>2BHSd*V3j4<ZY1CTCEQhM#IwC46
zDu|htwE$S7!9<m~E?_lM3D~p&l~OFuqRr!LUean3E`>?-8ycrSZCAE9ynN|Vjwt0q
z#saT%;-sXDi#a!3{>bz#!8y`OIFv`Y?iHuj`Q5sF|NdP!nbW8<3k8qy5SHZ}ZiCsn
z>_Et&|I5B<dB(OaTg3B?*Xdfy_-AA+%iXc;d<h&$Fs({X5-v}D-LJnuU6i$}@{=wi
zW&}=1Q73|)E+Perr1L)wT)c?HoB$bX^dnmC-?V@Kj)^4|6&E`nx9qx{bX<SiB0v^9
zsH_(Rj)kS;)#oPx9?KEqNVWQTBbV98Yb>x7lXqJ|$Rt3~b}(<~7OHM{)(cm7o50`h
zcBMYI;Ml2wNl6>uf4UX-_705t(t@zk8;UKH@d}NQ%Vv^3;C@kTv}1cX^~Ajii_2w8
zAt&(3yYprPP5gEX4+u~LHTCqOd)BEL7{Vl;{>1}GRapEKM<GHi=w$qHOd30+ug;+D
zSHrwues&VB7>Z5@3Ex(1kBOWNLkX5lIV11UH4Z@Lkg)k&k=t=-!0?ZEmzyIz<K~0k
z7_tI8y}w(@zYYO<Z)!Jcbz=dNCQB~EuR%p6C3P;_N|<67>Xd;G&KzxrbrU&3)QDeM
z0jnJzx-oFz_{aU`VA)>a9NccRN2l<MhNd(W$;vPDH9T|~pNNxzZqpiA*080OF<i1P
z4g4CXb*Z7Dp^&<2WJ<4~)yHGc7;>R+ICOFf^0gC%UY$b4G6Gbeg=iSU?&V@pziBP^
z1V-l}Ml+C9z_0+~_&%<PKP>P2z9z7cG6qb}Jd?D4kzj^{wJt6$WhbVTm)_?)+>R^l
zDdRvcuhOWivuy`OO6H@s{zzF7Jthiuv5ar!;5gPd+2vBGc*u<x&wCDW0ZLNbMf{MB
z4f$GK&A~BozO6=&uml*8#QeV%a;wK=B^GGX{sPEP61yPI9s>g?Pwf*D5_&(ozNppk
zu8?A3ye!|Kw=aF{G;|5k&A(t(9KN(Z<=eO2Ut{8U6@0?yN?~t!w-5<!p#$&{aH*`t
z{lPdWYl3U3*px=tp<MNV!`?U~9xC3d%WR<Ud>zu?pY5xQh_I2*0at2vg1=B)Jih5M
z`!$m++k^(3k8KT&ZkVYMJAnjYbW@M-w*^)F6J33a9hwvW4noPvu@iaWcC{y?6lFbN
z;Fu%3woGenJ*VpbcwJPi0(TV}4oGNdFINBUn_S~`tlZDZPnAhS2#oMXti`HG9=6a$
z|Ef%lecIv=!5ZK58X9=ffkfT}#qm;SHr0^_M{Mo-*eF)<KL?zo)Gqk9+A}Oc^58>7
zUl{oCD!2UmT_haBj;wnb`xc-#DE$y!^@3y6cN06^jcc6J<($#o1=RQYHZEBM?9kKN
zs>T$uM!WUtN_I<6+9_+byj$<SmBR3$AwxzM8(#mrw3xbo2%_12V>AAUmd8P~OuI`p
z^NR#htU!iXFb2#%tJ?*R0bRj$0vYR9NC*|l8q0uS0ha1@YF^H&H$fobC&P-Rr1<06
zX^`I{J0TjMS6=>YXb4MJ7omoUck60M+;#_3RBp9%;9J_<ZLjY-{r~9ocmNGjg)AFE
zvP)rO2p*ushMB(nI=Uq0;*ZTvCd0dnj$Iv^EM-t_$UDq}#Eu-c8jE4Vm;E9aOWJoh
zU+*kP{)1N!J7lN;s&`vb755xNBJF{0>28mL;jN2EK;T#atA}Bm4<sfe1~<;@4Y9IG
z6xBNGO^;EWGXA&bUziM}hKFOYDLD^$OY@KSW$KEG=x3@7h8JKE@9ktA-J$B19a4_2
z2N!;aC56>a|4()1iZ#lFp?PQCS_Dl`XJ|y|#N8ttC8qHnx>C|P;vsc)1igLR2`L`d
z?<g#^E+o9c3yr0+>iX^Y6@1WSV;MG@O!X2VKtA`|yxQM-wfPZkMYnrlV{Iothszk=
zGj}3@zwNjr|0-f8<9anPmnqi|H|Ts!BwjX}kUQ|{A@9%#J46;bHP}MN&&A9ARYX26
zra_3NkbyVJuJ6d9s9*!*?)o{m19#vPyT4N#*~G%O_i^|6)>hW%KctUzW%PYA0(-Wk
zwn5?HNN4BgLWeayA8Sotfws4|&CSh?>q%l$c&DWrT>gwpoV!XR#2>YB+BD9oXaFWY
z*Kv=aU!_}DXL+Pm?Om5PtfgkN=i0n{MTtWgLafOB`**f4^MBel3b+jmMnFD0AD3{w
z_$|*9@ZdE$IeGP+2$Jns8~zS5l$kNN?WDfpZErY~kx|1cOI7iQo$%f8y?OO@=RwA-
z{DI@MrMD0kA)(850?h*}9o^(kDE<kd<fnPm7gudgUa!+3CZ)ccF2Yr!b;Fzyg+dd_
zYoI8N(NL61DefmIPvMRanW<dAm{KdPtHUjwiW;>{<ekR(x$dF4zd5ZZbZa?q;-tPX
z9lAI!zL7*L!hxAOGu^U0-J+kJBRQ|cE{u&Cn47rx$?Cw=a^kFnk>lo{{ME@+MA!DV
zyA73C)DDUTE6$K-r&Lz}lQHc0@$lG^rmW&V{QGw`67h$WG6EMP8F0v3ok{hRm5$7<
zEpuF4TxK@5&H8ci&HajMIhMW#n<=lS+ud{?E6jMYE8=>~qh)jgVYQCoKlz%D0bPrG
z7j5z8(P3FPUM?G(BsponOl)j+T=n(ec?XW)qh~^s=_Yii)^I{CO{_mHIqY|=+*h4H
zw%6A>S6`|GP})vY{<ClRAbj`W<1J(X5P0qY(I{=m0P_Bixu%8r$72W3{v|7UTmipG
z;A=uUL=n#wtdGA2g+%l%J;-oEsA~aVa@=;(8Fb({R}&n~*-0GT7qWP?qZW9Fx7i<y
zur{OTXfc*0wB*!-p`0c76^)~r`h(@Qb;HaDp=@8FOI#}C)x#Tz0Y}&UV9ormsOZ8#
zKhb-D6?2o2^yl9T-T?EubL;uXQmjy?t5~Ot(sz?l;vrLV>+cVu)m)kG<rF_SI-ar5
zSq#Urk`kzomSbBeW(lm%`iYEM?o|(uf04VG`=!+)D0yTA@6lm)iI$l&FgD;ZKt<{&
zb=PG94o--}L^kiVW{I-Na;tm5EC!W$R(0py_r<GAnI*%29)YSIy}SN}UGl#0pGGl7
zIpU-jTOcP?RBBQ&qM{6ArZhdKH265aO*18Z8y<x)%ePWe;5gh*q|sz7h8oK28&af!
zHuT~GIVJ+=bk{%iaU<x@{^)Qfe&tSXZte_dT21`);W|xq!xAV`N|@U6(3}j`bTnM}
z(zKXl>%1cL@84l+*3yoFZ^`J)_D$0oRkTLYoLv!6Ye!uOD>>^?LZxCZIxK$Epqc2b
zj6`=ruDCOp{&8c({e#gn-sL43v0%-S$<nBlalJ)Cy0=T_%Y@<c-_2!i9vul@?j)$l
zlKs0X+VS$$C-1?<6QX|&?JK_*zUdVI=OOtQQ>86)?(&8Mm5ROSDZ<Cj-yXfy4jX}!
zQsFFZt7AVkxdZ*Jw)P@sXG?ru;B!lWNMa!g4m=!}r`#XP-Q$C4{|K35Tc(v9OIV}e
ziSytf`F2#(J=$>5N9e{<SdGS`J6{+UzQ&mwibGrGw6x~D=U%6IZhFToPgDmBo1Uc7
zP_IX>Kvoj(w;!L0xV%n7)YB+60DT>_^LUC7?@P(L5exrjb3<2H6U$+@sv}Tee<Yq3
z$A=Mi0GW52XJnPA?42Bt8WR#iZ#Snd#}hd|^$_%UZ}9la+dFyzYE?T&EOb^y{fXT0
zrOmNlW0roo;=ao;tARenc7wmQf)&|z1`Wv+*T>x{4rW`+bR=AkpvH@C1EWv#6+u@b
znS$EbG}xfD^yIz~1u`12q!dJDP?N#Vu$g3l1G$B0=gq^;dap&lyN{8D1)GBMNTFIT
zf|Rk18+DV<a$cKFS>Ww9QJln+SAQJEaI^E~T&p`9wN2Tpe39v@YKx-=n4KU50p&AZ
z+Ql|~zbJ3XJK8n3nL6L=Hgn6dFMChyFNV9!JH4CZ%b{c7PC&+Qw^mWz2|RBysQN8j
z7h5>KeqpdAER#7+{q1tAu$%;Mh9Vo&SC7+`+ctQM>*J>1t+nz+-;ObBaY%J*Kr=`J
z7<_n)-OKs!q#qxzS2x{+g^rsyK?;i8bPWs`Flx8B6t0QnOlN#gPV}vJpXP_>>>d@=
zBxu1Ya-6j^h&Wr5?>M)E5HQyO)N;^Tc|X~b8*mpD6N9cQa>UzcH~+JCfO7bC)6&o5
z<+hjh5EYg^-5=cc)IRuskhKk9y|13jZIEtVfj{j(awuqj;CsVkWm?<YSP>Ijf3OBb
z0d9O4u&KSRL^W}f(F{Ix3gM*rdaHW3y-Dr(N;}3Bv&4`If-FAO#wQClk(2o-zR{t-
z5ps#Xk{m;%?axYDe@X?j+swq-5o>7?aZ1>1%8;=rM|z|1NB}PYDg{JEHl3=ihx74N
z-f5s36TlEd?U9s&rZr}lg!?xAs}^snjrx%1O7ru>V41s15%ItGaX`h<e~_EX@AStZ
zfZmgn8g=#c-p`NMK+V%jJ8Q^LJ_1MW)AQVb5(fi{a^%vw=ji)H4{N8NZ=d3Hw6EUy
z-&5`;D|2{!eJ?F(y8bgPn^epkrrQDpw?aE<X2cQ!qPh@{_EV|uqWn(4xswRF&;t$_
zxW9k@d<Zlc6_5|?X~mmeZ)_vEJ``m17h*A|1*w0!g^P_{1o&>@<`8#K1GrVvb5b3F
z+;hp<@BXOCH~D(!WsWia_1U@A_vw>X@1lm|%%=Sde|2yXz4QBfV&r-JK;-QF35aw_
z&dg*HUh--(1aY{?i%*TQKatVi|NCMRNZFsj7GeAjBfibndQR@sJR3TNk4pS7?Sj@z
z3M>*;-<_jzwI%!Lc`0uA*mNxnf#fQ%M}Zi7C1UMx=@#_1ZJaWa??0C^JCtT_F!TYN
zjX=KkbLCVWalpA#*Z3<iA4h6-K|#dekZ@RUFO7*rKoPLv5NT+eGnbM&KJ?E#FDgA^
zT^3P&9Sh(*mcQG&h@AhRafYvI_3AT{0U<XTt>mxJw=8^!UgX4}=HNcv1K%W#Km<$g
zA*CR1-GiU%^E6;7x8F6;;GYp_09eNq&PkrlnO_BZ2fneglyf^P0utaN&$7AV_W)e;
znR>{C{C_HLoHA$b<UqyKR6!C5si6~?lGwB{i+d#-v8bq2tVJ86sOkwqbcsvRu7g=Q
zB-12642oOtTx}t<Z+tF3cR26|{^~ce`9C8Fs5?vtCLV;DjFDd=VpAq@vxdN^oHkKM
z&&XJ3+K2jfQXQ>UdUH(f#mbG2&lwJ^prsxvuX`Mb`%UyP%^oT?2ZdSKSY<%Q195>S
z0O%*WdK9Ukh?u0Sm;6^?;Um6Ul(c}E6=s8Tv$*p=kp;P>N5*kceh$AqDP*?F;%EWZ
z4pi~bGcmb7{Ig_jE6OMIdGlYM)xETGGup(c#{IYUx9fM7T}0QLHTDs;<3`ss&em=i
z!*+J;MU{uIkkAFYbVlf}7`C$e{;P;o(iQR+;xFa|<oI;guDhRa9ZF$_=<G<p#>X9-
z{?r(6%FXzw9HS!PX=pV2PM3KcxG`bC1jZ$vMW;&Dn1qBr0kaoN>EDq1Ld8<@cb%5B
zkso_jA}(JCg8}fY-@=*P+dqRfKHgyKwh{CG4WzSIk^z?k8M^<s(lnP<4ZeC)9_)i^
zpdx)VI;AEtN}!_;_tx9H<z;&43()e1yl;Skv*^7K_pp5vH)ebT?HLqiU}LWjYKvYx
z%Bwl0xx37i)R>G^$i%~u60%i*dl!VEdmz#=ByR&1@Da~Jf0$S{b9dXNRBFu#Z%r>K
zpq+v04O9m{Lb_x0Pm7z}^-+Gu7fwt5n>77GNMr)!6KBTz^CU1$*JKeCDJh=*Jul}s
zTnJ@kcyN0;oshoSSNWgX)X{jXHq2(gqLFy~+{n1OOv?Zm%k;jQw-UOX){KhgQPTv%
z`fmU&|4;xc+23S+vB8TljRxt&02yKL=(AtKVrY;8zDY)psBDoFIu;vz0Dp*VG->64
zjRJXOSv%3bidCoJ(QsqHaOY7IyTpG6l1jSb??`QF7OcNp7u@_a{X)rF0FZ&oJ#8dI
z(S%?ktfKJ%u{JYUYirQ{esT=CH<prYATisAixnQMH`yxE7&Yz(+KrB@W7FkOrfLPC
zrAcdO`CY*mj9vS+Xi1}*+q2P+Q_vW1H*`(ZQm*}#_hN>K-R2}PT}@&xW5XhqDCTdb
z1!Qgl819CKIjeETiqfwU5t^oAD~7`ACtIw_T^gSbt1E}1T$}K8U}%sp$#CaL3BJx8
z<#-x&{z{U4>&*Fpy6)l{7%@uNYDIQ|2!IZalCwaoh{xQKpu1;w+am&VP4Qxl#avB^
zUaiHP!V(jXUO3A^eIV7{_%T)E#rS$j*<T6kBjbs@Rr!UaNW9Fh8fqD0DBrP<=bGx$
zZapxRwtRp2D!cE=cuhb9V=4~L$56u6IybVJ4{Sq|BJxEo%c`hoRC$i8W_wdsc15F6
zf&i+nAs@{&+v*2LX!vC{*H1=yH0FxQGL&_Ydu-J7UQsmbq%+LZN=LUT0O1TNnJ1U+
z^y624237zCO>tjVp!M@jGZoV+u4c81N7}35$$`lsp@H4rL{Y|;<+jtE>lrslJcR=Z
z+ToHnRaBI>xn&Nqjb;HnzyJp}9o)`GYgZdQ{=%v-n;<CVMfXdwO`F|%<lY$s@3PQa
z4{ZLEPBr-cUEK8MG_W8klKZ8`KIn_iN8H!+u}b?~{3{y|n)dG#FEzlg9hyE54aGCF
z`KF(p=>U1JxX~0vhbr`82f6=SwoMFgZEWOU`!KCz<j+^#^(5@jlnKbWalXeb$i?^-
z+ECM#cJH|(4?r{ht-*04&(arsLQZVM6Utlw$OT`%2moD#0WZ!i-)ld9`@4AUb#_Mh
zHC-sN8K|1!=dn#_v={iRO1ck#M%K9aeT-w*W6I^h?D^%a(fMzADmbpdCqF_?!;$`2
zviW9bI>(Mn?HU!L(6k<h)uA|w>pG7kZoemQelq?nS&Qw6i<3ac`;%wX2r9$=n}2M-
zM#X?q>_df2GOb>jXyeV0*y$<^2h#l{6qcA)5jUH%WDQ<k-ZdvdAmEywmQhv3l$DkJ
zprga%eP#{<9(UH)uKf4|P=VY0I6|<at&d7dED5%^tJMJ>;O>3^Qc$HFNTAXAmM#?C
z&>-#Oz90GaC0wNkz)B2gp+qH9&cT607ZUJ%zslor_z@6xiABAf-uVMN0_^M5LRwb&
z(2aKzNDxtoU6YU#fJi5|Bx$)bNY4}>(~vF}mxdh@cf2I6s57PRxX=)VLB?MLWK}?M
zBFBQ_PdA&|_ttWE$e}CBnwmnus5G^&P}@AaVu!V&`z9j-9#yH?AcX1ZJdx4EFRf(&
zttm_;^G<ViT;N7fco4I&uz-|v#j}&ybX>-Sb{irQ05Th92o&9vq$H>T^eZUy<|Y`B
z7gT^DnVT#3*v3{37+e9hRR7^nSOA}kpbAKXRCf?U`KbIaaL@?ZsRaa5flQEgmHuFU
z1m)0Xyu_GA>g5WuCAb3tx(wt8<~JS=4g^3GrQ>kuWFBJa=}d_k!ipP@G*Y3|3hesL
z3HQfsoNIShS<Xl&UC-j11Mz@Gp)h52kEHX!d94K_>xRdx=878#e+f(L-L9(#*maKA
zGlZA#NQ#AQZ%>m%@D%qAj~XKj3+JTe6{^gCQ7JvBHl@#Bnyv#t7x~l`06gl97i!%D
z;0(Z8)!LuCnwLE)XLtcep{hN@4sgX_AkzEFUqAa&&@83yEDW)+o{L%T9IQX|UY%=3
zn4qUeXAroC2MF)ium9NCQ*IP8mn(qBT@dr9c=@z$+%G)tEdhrB`%XqQn_E<b1IQY(
zE@zz=2Lhjyk`OF-_3>X?{%L3pbr$@hC**U|=2u!@r}YTbWzjRl((|0t1M;Fz3J&n*
z@1@%FKFUjlGN&wrC^lAPp}pR-t>eDElAdwrYZ7nB)8np>(A`&h#^cX_TCX37@^`6U
zO1)zitHO|guO>jNeED90qr7~R3M2W|iJDhXir4PRO4KYif{KcCdyCg;DI)j1y*TuY
zm_4RZ(QE18d>P>RBOgHy9Wjsl@z<&=BB4_gr)V|1UsJUqs4t(HvI?xLQ?+ro%1z)>
z=-;~rLOg)5PN^HYj`FoX-5r3Iyf$M;a>U4jUh6e-S&fmiva+V}+TaeSyrvU3l+(HZ
z)`qo%-0wgq(a{QvUyl)JRN-Bwl<Jre)bz^P`LQ@rdk*a-TFMH)`|nJR=3*z%a;0HM
z1`IMgIXCxfx?D3|++Wzn#zr6LRzKi&8?cawcN{ID4DV6^(0IVk4#UPsLvJYd4RgG5
z8%t^WPDPdbPGeF5xWAoR-~mBjk_b+>mpv9sMx?IS#$R@?teD<i_TIBeuM}W%UC&Rx
zC92t9MlE|R>zx71I|GD~f0?Tf;s0B_i^A>&>9*O}v0sq=tX&k?bot};r!gT-FbP;z
zfRX=Z4NXkqC9i;~^^QqLiv7=HOUel@wKI2=#nblP%H42wNC6eFDm!1b-zva<rvhyK
zVVg5>{R>-FUT0?xmiSGO^Jf2hLqk<LIVAqfTN`=|_wk=c9+Pv;qmJOx{B^6P<M5PL
zrM|Ce%~-&KDym7;X@Qxzxv`=dXhN)LFBqlfX`Nn5%>bddyqmRnTBKW~8>R~>)!2Xe
z)`5&;^0GpaYxT)Lywd|zfucr%k9>f{LL(xQIhe=<<f|rhPqcJQTYrZQ|9LCjlfrK~
z<{%BRdS?*L5LHz46@V;89@lUkuoZn&l=Rm6p412IH$e3S5u9w!HJ?&BptVCU13SJ$
z5y!yE80!T94}z=edh&TWKs#gE!)5Oae+>;4{9lsZUgbZLuR{*2OWzptNh<iVfqsCx
z!Ktoi@@nic@W!UA?60sgCU$>7&=xhOJuM#pejaSKFt<ayM$5&LS(si`l<(1^|3O>(
zTYCCn(`vx*%kgi3DqiD@%~Z)hAa>*dtdr9BklS)JgP=-tj}O?8!fX%WPKQ@2ynM+G
z-yJ9EW9aENnRC<Y>1yZiqUwo!cxi~>i$9>A!q)%=c1QnD9oHSybh5`o5-zky3sssq
z2oCK4Lm-qm7>^P_I;R4M2pSBLCPyCSfFz(N2Sy~Ql+YxI0zomMh#=t!q8v@Y5Q-3m
zBUA}R<!JMM+`TvN{&|1x&g^`5c4t2Gnf>hU=M#{IHT;=7HA4<u?&gJ2_V)JLXOTY6
z5hLC<Xms4%Z5Oa%+g2Cci@PN|mAuS8#Hdzu3pERV>}sc^dS=)BbZ-&5<9>Z~Ntu=O
zDOa~6Cx76-VdF4{r*V;)b*h;|a9@PCTla<UL!a??oE~p%QW%tQZbx~dLIr?PI2``R
z!S33Ay%wN}&!>J40Elgm!E7^6-O2g7$h>1Ejax(h?^b@Kb`R<y68p0ggr$Cpw5|fn
zZ2hQ1rC4!A>CeAoer{-mjSl%1byv{zdRM@iNVd6jg$@lMLHo?BqeIn{4qdJdEior#
z96y#(Nd!s}SnHSmVPW3_8n=DGD3WbtZVq7160k1N6!o_RD)7U{#2&g%{@uII6ZuaV
z1qH8#of-O3*8z&c-BP8sv|xbKaM@pu(b>g@3dBi3Fk%3{`&)WQ&9R(TAGbT;N!pWI
z({fX(-7NB)L%6K%pa3x?!g!EM-uqPPBA}f(qk!_pfm>Xi3g-b-Q|@Mt&i&8YNGpTC
z#gc4UBNoiYU;Ve-c(CEj=R-@ZRLaO?;Gq?krf?{prP`SVO5mzdX~5la$F~?zp&OjE
zhrUaYs?j4=qs?xQG}HKF##QxlW$#L=?M09B?Hr9hU-MnEuNt+h@*jO*vAUE580PYQ
zZzT=HWcV&kh=cSrB$%@nRii1To4ejdXaVVclG~%3rN6g{1E+0UlS_dgdm&@Xz|`X(
znoq>GZl)yjtBtD2##P|-`KTvDfnT>Jp8zo^9~>RT|F9US9taD4A=<};)(-BdQ$!RK
z{nQf`7%vZ6XABjBEkj9=Sc67Tk*#{-#O4W2fy|uK4)dU+og>>&^Xtd$HFJh?TJh1s
z+s@9!iTvZ246a|xx<hcgk0)aNao+iws+KZ7g%^sv5C)oR0!H~Cs;Y#@+qRJ>9v04B
zMqIj>mU+JRm-hab30>=@wqK{_>-2&LT16}IpLS-j_Zq*B$McQ-W_^VXmla@YF3+`|
z9E*PL{G2phbbKfYJ7hC~rJkpLmqdyrmSoLtQjk2F+wM#t0h+*zMooqjj#0cQmdGf%
z1(nqS9+d+#z`AZ*?w^%7Ka%S#k_xRYM1u;(^$6rv@QHh;j+A`Ez2^@JmS=+GBi1&M
zBic9jDT9^!P9L}1c}Gz87YXTL66Ln4_?dPupGdIpzjB7F0D@7oPauoo#2q+3gQCk@
zlG#qyWg``XC0E?rVsdu#Mj;F&TDgXWg&ci^t+>9?xANZO^thdLr3r)UHcY^q6IQRt
z3@_}dVB9pY2jD(S&Z)xWAl?4A0#Hu&m$T)SER&+7=tf|@>8>^UIo$N#*Mr=Awx6$-
zP$x8bJ|u*~SC%TOIdg6&y#Y>jBJgE3Bu(i$7VrWR!R7du2Bd2x=bILIqCs?zTdTc$
zgkP?6gidTxtVxA}xQ#{P{M6)8RJkr0TENnyT;Qb%{ZWH#wc!Oh_1t=>8pN-E#p4J1
z1B06bM4k+4(#3NxMs_5BNGiA_aVEQqUG^H@wa6)qx*=Qjo;pcc&m%y7q@eN+EIGaA
zf?%eVofh?R-^xEhcoRyHtxW*iaCm_Ut+V1Vcqj48)XvPH^mkoO=vR{n1qs(BP!5XI
z@zHdlJ}<tbZ+KiKpN)F41~r9+pgA{H*IOKhw?vAe4_QP<SUH=ePasdz;t6x@uZMB6
zXmqAtvfhB%=$1KgQ_})DVWVt^M@B6@`qcgLX@atvstsJtn?z~kr6!Sj9Yu1&jLXe1
zG6=HC_kZx}lVkDa4*9-c$u>ffp!&zk_hvDtH5ab9Ydmx)Zl;?i+~pSH<g>e<rBlrW
zN|lt7%#<6CyHYunw{Jhe>Tc<9B{kl5p=<0ES?{Dh3{7vuzz8BXQnn;h>D}<dc$ft?
z#>~iy4kLG4%Tmc%@p>?F&)8^N<HZWpL3?S=e#)1C;^tD*9aP-SU@*11AXdA_2*bYA
zAczAxa0MuR79-gMq0VAFJJ%hB7`k7qgCd4LtD+4IF%Wq#vL>hV41Zs}HEVSZ2JXS*
zJz~cU2xJ$l6nJSenOXA^LiNKKG~VL|`)06K^9)@lOcu@XGq1)H8df2B*4?cz67utn
z-DPCEIT0<cU>&TtnOV;KJR|sYMZVTXnh0%jP4*nN!#7Ho@!gM{{qXo-aUcb#r=_N}
zwgsoSf5kBL(p0*jZ;2wwdmcA4##<$jWf6_B$4SdaLvspGgG<5lh3Cu=%|798B3?l2
zP@F(iv3ugvpJXVkWofU%=%@=N^bu2FOHLQHV!fCWa*YK-xou2?j`C^<&lo=`MWpQ>
ztLOCf(Ops?;-@T49y)7ZJ<KS!gY}!#;<sv5zH=BOv7=B$9yN*A=#PO+=Wb1mpL#=x
z+to#U{S73<A3Zm{dHG|JJLN4e4ky$|Q_`a=$@Jz(=o<PzxXKLvvlfq~h7-OhS^Sbq
z*9ygjJx5HGNGHuoe0Nq0!*>vb6E>-r92fTwI;eEyt{Qlgx>jeGEy74vG>+=WGTkqL
z#7!(z=E_|!xN&hKgPUdHSfnw@hqxnGVb;pSayH#iTsN1&i^;5G;G4kJ253bYAQp$S
zhSV`+^^=)X;+0A|#C1YeuIX$`HLh%&;q5*DP3?4Vkf($==oFm+$<vjzR@&gFD8^px
mj`#}_|7rdYG62ws&bwBpT2J`gqXVH}AiR_3_w~3?+P?v@2F;cL

literal 0
HcmV?d00001

diff --git a/ErrorAnalysis/error_increasing_as_sparsity.png b/ErrorAnalysis/error_increasing_as_sparsity.png
new file mode 100644
index 0000000000000000000000000000000000000000..e856f6cac668a04c7461d3cbee135ff4a129cddf
GIT binary patch
literal 33667
zcmdqJWmuHa-Y<O9-7RgQ^w1?SbO|EeI3nF8JxD4ojf6BvNlPQhAdQ3|NQrbxN}t8v
zXFq2@=XuUK-`)@Jc-_}H<2|+Rwf_HKEnjOsRwTl|g%3dxk+PDU76hTQLJ-<5Tx{@6
z4?Nr*++n)Gm9=rf%@6l^1bB?+tYqK@K?LMC2ioXtzy)|x)LmZR{i)LncP|T9OUS{(
z-PzvB-QMOIi>IZln~jqr3m-T5!^vXp?(Qtc!}GsR;C6Dg;t9(hCx9RpNLfxs`(?(~
zthcfD@)geBFn<@}X2g3W3%X-ON5rcfgTh9qRNWo<XNK`t6|d9NOqLD39pbej`}zd8
z4Gq#2d|F?;Sixpz$8`*%f43!GBhfB3L`d8PVGtAcpIrK6((n&^4~Y&lV6TV|_lc~s
zgpk5<ZESD5(ICNJSRE*^SZ|(z5#WPIA*9c!DQ_OKe&Kv@^AH|kpn3B!gtX>8OGxd5
zsH&={s)ML1EflR)ly_RQnxI9Lw@shO%uh?0f@)I(iR{7j?LiY_IIg+H4m#;GPLw_l
zG>`TPZQ&Y9MElBTmjm&lZbQGFhZ@qGIf*8WcO9OZM|oh7;+ylVUc74TmsK)?%i!85
zGohK|EHDn8lB{q?#o$7dX!aAT8d&B;(%;6hY>_KIPV~WoP{GiFBczL_geEP6%c>rc
zjz~vCrK-ywr)}Kgil|w!$}&*3xXb-uDWi12g!)cxv2ST4?EZ@=<><l6)655(L&~@|
z_LL#1xQKydSbZ4GGZ>~jMBCg$8~GwibZz-O6XqEX`yL6S?xN*@Nb`Qsl-N`fKacVs
zqV31jEOWE>MNMH3{#j19D}NDXuwjBIU6C-MMO<4%Eu$+H=UwpdqKIw!Og_^#7c?fT
z@nomM>N8-;UuZeN3B0IZw1|V~Pl^<D2wyrxgW$5pWMW+cSx+G}Rp{-be{dEs>D~Ge
zJBIE<udp_ox^L`qR8=f3A}xLL4+mmktV2|c5A~fNb@e?_G#YkHff&%J$;MbCG>=$m
zF*Zt0KMUbSiP`mK<cM0`M%a@fqSlwk+Vms@PRcdi+NCD1Gbdf=H~fajJ)P`Cclo2L
zo<>zkp!CTQoN2J*MpLFC+Ve1&P}ZY0JJ$qQ{Yb}Yl>fC&V9^0BLX{RF3?*XFY7e{0
z+cFJfJL}ijMGo!qzJ(pXS^2|)u{@Eyv^>2-!J6+m&VWEq4_s4({-RA`vd|%gk*5$g
zABt%?BW07}8OA~&M2x17E`9xO-xIQdbTOPqniZrVGYk=u1w80_JU^87!E_~50llP<
zHeoirMvmlvWRm7aN<%ytaTqVP*ydFR>#3wEAr7bw!p8Vp8)G*Rw3l_xAblTVh7KS?
z^QfbVX2mm83|{IERp>h$_XFR?CsPL@*_WB6XrJKLTBq2Zn-G|f8BhlH0@~sc3eB2i
zF#yx1Z%+bAlwRFZDq34y7|EBj+ieDk$$T;sMpHvN^E6}VzxRp|44FTNL8@pH_=_iR
zu@=3|@_bsXHawi@5M5|~Bnu>vlZ>_F26or(=eG32VKjR*UaXFuC>Y1ksjt{SMw2UK
z&vY8|J*KqbqyB=U@D;)K9MMS^^)q?gL7OL#DRNJIj0!(zeqhINNFBF?U^SyY{3p~x
z{2pEUz3G`8#L!`!SvxOi<3uZ>k^jPs5Grig)fsH-_E~4P8D(3`cbLfcH;tV%w`1AH
z8uZ5A$j`*tQ^nX#$gv~*W{hYe>lyz3n=vP)jY|4W(1onvY51*AJyPq-(Iffi8~OeP
z%JfbPKh;+MFhcG0UzZ9*1L_}7pQqPaxesG4D5^L8?C@O{Y(2OlWEqP%*U3JK`s{1e
z<t>FCN79iS<7ZqGJ)xWciD0ohJKJ}hYn+P@Lgv?`%WuZLCE?d6`87^#A@|uiG6n1)
zEU3-l>pYr6?YCp|ycOE9RALtD4lea0e?^qOBE*K4h)(OckUDHDI=`CXcDWqQ2DeWC
zR_XB4%&NU@O-!}ovnUTXgi4Koy{LS6&73|PyY_q#XQ797(_yQT$T%2=nzpHkhZeIh
z?$j~a`<$Iz7q3`(Nq-`Nvat5pRxfBSgNZHzq6Eo0Jcdr0THXBLdw;ktHz8Uez_9cf
zb^1`eXn5p5OnZkJ$%TX|{8nGdxc=bZDXJ%3ELt75w^*qze0*6{m*AEKejVTU7tk@3
zHLC1;3rRR3ewzZm@%k0%*j|vPdR9S$CH$||W?70<PluGINg%z_0s5ZsYKxk1yjvFb
zqHIfP{3<L0Mm<0)PPiz`K>|N@vi00NwmW4D3G8^C-bR?siz3uXp>GNkMr<kK&fh-x
zvmjYF*{twXX~H+F^mM)WbRBcCYc=<E<t7$Oue49@O3~FWEWyq6LrS69_vs3q`I9JE
zE^ABJWx6CoGcAIj4ndCLU3p7M_4`FxOTeSKK*O-PnWKj(RRO`gwkuefwVIIEpZ7d?
ztocF38WA=TEaN_9Wfp-Ib8eR;RQ`h7mFqLYr50u;lVrry_Y1`E7qhoF)3XbpFAy=D
zO@BFq*{ZVze~HyEA(PNt5@FB3deLoI!5TbLDTB6P235!uzg>l{g2M?S?3#Ff8OD^@
ze8C^{og29oJ3a3C_|m^Fy6hW|oqvVSm~Y_@g=<zX?Iw;nE%F<rfR>83;DMT2%5a;N
zgn5|eN$yH9PJpk@nes$rH3L>p)L|3_)5AS+5J8fNtZtlT#gb}KVX+pvFiQIlonGJi
zbL%0*H0Himdhwz^B>vuU`X$j3WynzVlIUvEszuZhU!uX&$QptUZd58(NIaDrEn?SY
zh{*o{D}*HMF_iT?<GR9)$WFqKOUaRFb?umRb>Nkz(O6GJ%h4&X2AX;C!_tPKfTzkb
zcUr9k2HC>}=xGs^aO>kVyqw^o<eZZ@A$6m7PbyEcU-#)Oe-wM%Ow~yfWk8C48&>=<
zj5OgrSOb5lrJYbyYL|>^w4;W4b&arN*;F-lV;=vKp{uabfSK=sQY|^zPxzbi$Z1xL
zKIMBG&TN*g->RfnDy_7GreUa8?tKqKM_@HF0`snc5N|3>NH<Ulp%XSn{rRu7trU_e
zs;bv#)iAeaUi;Saqr7XT5s{+Pl53{50^e%^^*h%{-fB7eTKdZ?ev3wT8#^V!D`LT*
zZ%=U5`Gzq>x<xgF5>rUEq_ioX-P(krF!qQL_UIvnbkG{w0v&D_R)gek!M0btUpyEQ
z12~-nF~O|b!ptM~L>{D_;c!C476C3ZJ}X3c`Lw;0_MD=_0QU~1j|{DDI-v!wo%&<x
zVw0)Qv@^IlW?y-6Gl^@MbGMMBm{;^2rl_f&^xD<EJ^rLNyqw;3E7TM<F0(Zs?(!9N
zr>3p+Cz@dxN>^qL<H;A%%5{tYE@TPRW*KD@z7`YCD|h^K=(ONgj9moEXV|Zs)-8<p
z;)EI*1DOVm$nEEu&dEWbZTn;AFn4Q17*N?l#;W!H`0AzA2iJ8K<cI+65G@C~Chh{?
z>P7YAEH22?nyFoD*p&=!`)p@XwA?b7*9?UZrLbPe4q}j!SloRT{<v)(?Ptj%Lp<q+
zFyHZy?T?Vrq*rNr(tjaedSroVTY37yxR~~n-PA?Wl`jv%NIC68M?{|niY&R}y50Xd
z*)l{=sv!P})+JgRm+=yxMIh$_H^=Q6KC)baL5g0G@J=Z2wLE9Y>(U+RVoBzh^zgOg
z5%D<!>@XX2=b(|rKlLkF^B5m-bi(&NvG*cZJY1~92qs;JhDg&tRtqe*qFY3Ky!vP#
zyi1jNzF_&~5&!X{r%SDZ&O=r#gm*N?63u)y&eoTgNLNhhNGz<q=tAzNMufk-CJLSV
zc!HhGG1^g;B6#w3B)|?gaIAnd-E{CuDqLvVunQ&P6cykV5?3FCSJS)mJ44E9r&@w@
z@QafTMC>wTmD(&3QcFF~25{wu5EeW;esF~wm$e-42#+-+?iMd9OlIw*mK>g-g@{4k
z$sf$Q!K$|P<Q)i7F_YoN@c{J*<tN$yfTOAMk;QoHQ&o3P_V@X`V7RRL@~<N!n}<cc
z_`F1MOOzvV;VmsKr1bQ5JI_erN|BwkV`g_=$Gr$u==tx_tu>kd4a}`|ba8PRqNb)c
zL)*jgmvQ78hqyVC`Wj_qWYWU;{sD!*Y;kgOwrz};JauAYD>9B(l5<n6MYpX>x3si8
zEi5Vu#4^v#k)U)SAN?wV^Coi81RtLMC=i^AjxTLU60h_nGb3Z4b=;9|Xe?xzHGl8{
zC+6`sMrT*h&TNp)*nr7xa5@<lOL^>ymm#7|W)K#ViZmoL{sb|I-L+?X45=&!U!Lrs
zU7yi>v`sqgQ^I8(B$@~z9hFW?>kyuYhNVb8HKEJMbi8vy?}^bNl7`;5F#P?CSY%_(
z_kI?IHTX_=*yP-Axi5*EjEv0jNL2Ch<Cw2Mel%)WTNj55ZU6nVBs4cS*T%%ebX8+D
zypyY2s&24F9sP<Fe#?9j-q9_OE8TXgfUC5z|0@z%V7ZhMO*+b}Rg&2A<%>vuL4n|>
zB=bMNx-)SIX*G-A9dDFY`Y0$W78T~_8@G8M6i$#xU5xB3s?Lak!BoO{>GPeZT?zB|
zZ-K`KxU7Y&)RErS*4E$C1?`M)xnBHP>T#&9uD*LmF@|%bu%NI|<;|Nna(5J>9#FrQ
zOBJ-!J)UdzWmMDKNRB=WA<dO7!Mr**d!LJ*Dp0b~MlT$4#e_qGetm8>ySg!oMf>O$
zEk8D`B!l&Qn@gXXk{!Plag%WyA^p>=v3cfu?}V2;O-_@!P0}Bx^k3e-b7#zBOzM1#
zzvpOk(ra{hcX?UIb8q4EJN6{}NE)7<YP-pbcQ6<%NszImq=Z~gPcQViv8c#O-q0}p
zw}qL8oeZEPx4?DEQ$WMRLuNDcy58M8--VC3?6EjsHpNvM37a3=n-6Dw806K}?TBL~
zK__8mM#9`$$l*$|qGDnniqz8Hwt8+GTG`oc_6^Z5E-s3KL-4y*+sT~o<2;4vzRhoW
z;c(&1gAI%T+Dk;S+|4ICwcf*ILGF!xM$>!%(bF&VvV{h)AW+aFA6)No+l5%EklJr~
zL2Ox2S^1z|0NjuOVas`IY=60*9~}e3zepoH!0er_p8D64r$t*sS&!@*Ec>Zf-@YY}
zhv$&~`0=A8nae1-#ONSCJ)M1fyd(jBE#UyVYlt+i(D7DD`tk3Cj<@$Z7Cytd!rP+h
z(eQLWkdJPB`t+$74u`vXZBI|QprYu0NY4tgN?l(Z%un~w3)!#TEK_<$Mt>T}-oar)
zF@~Yaf4`S4(rf4E4~wgdQw4WRC;DOpJ1cZ`LGj>0ar*K6HM(s0En;a1UmDkDP`6A!
zJ}V`~>MhU4w{PD{DqHs7q!bkuwWp-$ohCkfy07js_Z?{q$3=7gt#l;tIs}~vKK&Nl
z4yJodn%tixCnslBas{ei{fP~Hj`8)oWZ<vYY$_Ed&B^AkZr6)xQ^0YN6Qx0UilI5R
z-07da%>r!Z_{iW&c8Y>Gzgu!=o<{85&K%L<7T(wAE8J8!MFenYbQT!d%X0?{xdB8h
z8ueicxH!=<=?JBF37JI2+MS3{IIiT`5ys9OR=s@=1PWa`KGr|0f#ezP+62MhEq)em
z;<b5Z{YLUs34>xH?~R9UDQ`*P)5K>(iiWMtUZJ9oB(E91P7+2Lwdkkj&URx>HK)8H
z0bCyE10HMn_X5?<!wr*W^xf7I76>h*&f@26Xxfv95NikoAvmq)TD*6rS2^@5++RmT
zIF}BKy1Kf`4Gj(X!)0Y3)!OvLGB^A=K0ZF$+uO^2<m*XOXK1qh>0~}|emy}$a(z#e
zrz1p5OY1HI6}A3-Y7*4y+FMvy9e<YK<vnZPq_ZVE>K)+iB(jdPe2%PQaHScRBo%Kp
zwJ2FbL&IPrJZc`(pWYovw9qD-%C@r)R_^ZZwkj%p%kPAp3@`V(NVX4SeJ_tDYp6N(
z<I1y5%~T5ZEi}-ez5RVH28ow@h02e0fnuQ)*(K_{O8hafeWc_t%?i0Qi{|TVahV)=
zA)C5g%gt|ve~QOCs3C{>lU6paq&@<7+#v5i)flanrJmTC=a!br3NZ`@qSvmrwjc6~
zi<JbPeTjG$uM}cX^TKj>ws|t=Y%|)~sL{260K&w<Il(6(+2u^>_x1JmK4q48IYLZ|
z9+hJ1(>pseGcyT}lUc8M4{YR6rg(n}r@^mVl$7Ik2P=cbczAfp!8jy4>#M7i;$SLI
zo*t~0L*|neCdd9~hkw>*n;UlD%LKPL&9^zALG2g&k(sfvv6bL(+MR3lcXM--@9pg!
z&3fc}hSn)?2#Ual<jcK<EO5I5^IpZ$;hQ3}|M<85{(dPDkx!F{>tl~R?2u71{&1xl
z9j)7C_P)DJaq0M9dN63Xag97N+IjR1(Q|U7<w8F8aj}N188*4w6dH4%L`FraO{!Pg
zp@}D{gmy>Lc>Soen;c9{P3=pM86VevU0P~q>0buwUFgm$Pr)bbNn4`@s(PNga}Mo3
zN45<x1j^W?!7=kG7*0#D^mFBI%P1&>>A#!r>r-K*p-CZxVkOUtPYTuFX)U{YpE|W)
zzMyAf+HnDGwe+Uir%U?#yj8jj*VfkVnJCrsI@|B(*)20_s2B?)qSsQ4zNM3qoy}8S
zRrSQ`g|5lmeHiT9eMw2lZ`0F;vw4an*Y{MDpX=-EFLaSexj*vSF@AP_ygd<&O|*Y}
zaKKSMeCb%r5(4{<)!_+cLd9tIzcMPVqPDR|R1?Y{Ati>q=TYo9HghpdR0;(@o7vo1
zCa@X3cG11P3!7u|?(hb-eQXq16DMZP=W=#;*VahmyXU(-T{rao`}d?w;SIx%oz{~%
zw_Ad?+NQBgk3I-MZbPNZmQfQ1F%O>>{zmTrSNKf|w+TBIaz5a^e3qlK<?X$1Wo(PT
ze&vp?kPs0KVj(Xs{Jw#?v0bQ^HfqvbnVb6xtz$m$nk!Sl=B=-;ZgPHZE_}Q|HN_R8
z6>&EI_V%7?lUk;jpcSaDjkC>OmEUca|MW2Ptc~OZ<3m1&Yfn6vP(=L$18R|I7}%7y
z{V?zS-#<(BD!+f6PPT|PpvcAinCcb~1G|qw+CwWoAevn`*g<QAgQVWKxyNmW{Wc*q
z=i{`)p*72c;uVDCU+C}AB#Pr{EE8Dl1U!(CP_!2#Txqk)?{q(^qeFUreXMAHvT#C&
z!gXW(VKaac(+)qXyBqWK<?=Nj$a#8tez5FMw%qvcmk)ZnxW|UJtVSJ9Sy`C~1TLC%
zffh^}*P0eFk#`H?OH(6)K+gsDX^Dx6#o1P$Utuv3&~U3|gZ_UNgn{!M{0vVFq@dmR
ze2sL0hk^5L{>R`-Z}@|5T`D9bq=QaYqHXAHQl&pYg^$HgX+EKshsBz4AOP8<_k>1O
zaX?}iN|@07kXKL92<^)F1gwfQ2r?gdVBt*8DSjS-6@F<P!OW$XqokC0+4B7LNNn!?
zY=3MyMLqR|-VheKa_T~P4b{@7g2MEQizqx9#rd{QA#>zM{0e>J)tnGgt={f#c`9=9
zx6J@C#PGiu_=>$zfp>bkntlCUa_*yrZ1~ia{><9iS~FyBXICoe`a5D96j*~6x78uy
zgVo{TvUQ0%I@mM0&#T#iI|2b0f8h>pQH~C{EaSgFH8<<o&$axp7|IZBw5_`Z+IM}x
z;WtH90s?|=0O0VUsU{D*Wu=Ue5X}CCg@w_ZW2{JH#<b1v2RkSb`4#(wOcI}7p6)N3
z0HF0{d!|7T9K$(YyK{qiq6##K0Rm|$sL10j4#wAo3^Thod;-FXvFQCNdg?~?WydUE
zMqujeD59K_yHaM>?BA}vcZ`n^bKZ)yOz+}Z2l{h{N2@I?tE$Nr+O08S+WgTP89vt7
zO`QVFs;W)7BQL+0)mYK~tozNO!%V$s+Argq2F}y=_t|81H6H*I8q{iOd<8OGP$V^1
zUz5+#hXPOvvqM9%0vAJRs^|O;201VNz#`fn^gdYez5zxRDg|%Vvm``UK_TQase0Dk
zO2-fMc^8+GwfXkIKjlUZoM;P|C-Yuco0aX;ujOv<Y;T*KZPg5~%r|+I4h3+SG<)iB
z8rDA8j#p$_-`?6P+dDqyu4`z}oAAisPS7qI_d!E#K@1ps+^ZLgnTNxW@oGk8>Efpp
zs09-OV=hxtc+vMWB2i`G3*I8es7%qdn>^ND4|8WkOe9U{Vvg_;wv@LwUXAw~xy}Zk
z%k62wg}$Ww{-Q^>$?*i4ntYBinF1Ns#_^mz%G(^~i2;~dJb2v=&l<`^6Bf=%&NGu@
zU0C~(P^ib2&mC1IGUOfTmeNK0=g*&qXlQ6BK+{f70L3G|wYAkSN7MXp?c1Xl!&&}P
z0s^%vv2B0<{*3{rnTEwUjR!78!SIleAkPgf7HTL9TNB}gHgtL)dI!A^yuOO2fA}c>
zr}4sq3~R^VBfT75^G#jzpCT;x6_l=b14Hi<ad0dKk9QagKH#Al>Tdj4GC{)R#=XT~
zBoln2svJw7A9rfZ_Lv0{aT@C%rN-Y0(vT`Y&G0`*=V^O@NjGgSdp_3tI$aAeH&LS|
z_mUarz>9AcEiD;DbbR>>jjLIulX0(542)fnAJGE-s)UNu2`;3ZaUdS;af$NWPA4_q
zn&&wj(_Gh)mY0JpEZ}<!E7$|6XlkhtAv3pooN;r#&zOpJahxfIY>z;JX)7|ttiroJ
zHkS9?y4e$MMw+IEYi!F87AhIAL%f9?rVll<mp~=lr$w%!89$3M8Od+$6^%vXW$b8(
ze(8|#ls%~Z%7^sjUAD<ADISuSn_T9jcXL)`1Lbs`KYk2&UGX{CPO2yep*Gm}!IqRY
z;nB;T4a4)QJOw=Z8(Sp`{FVbYC^$GrbhU<lv#BsK1qTp1Ohy>&$d33)X=od1P*B(j
z3H^Qhqi=BtKt<zL-ZUMrHwLuY@~g@gE;iIrt@K#yIe0)fJk`4Hltr!t^Kq6R_(t~x
zw<MUDq?IB*5;0Ei<rD!hsbuu+esJ8y#fL#oQNhPjPx(<HlDDQiWVtKnc7wq`_kX4(
zNEi2VM5UMoc;i626~^mY+S+$x-n`+nZ6mMJXBY=XTMKe_b1VJ3-7sH)A+4qL)*W=`
z+5Lk9u8Ye{)#I%n2MwMI<MkDTn5@E%xH3IK7#&pzBBvL0qFT6OsMsPwKuz-n<5dbI
z?%zkTa&d9ZPE6FzWs?KIZ7VxgpeQHziAVn<%Ths#X<w$OTVc=H(WW>zC@a%<5f1TR
ze_~my=~dv?#GRetQ<!iWVls$owL|%;Gz$}Yp{G(i^Ed%#c&Ys1=z!4MIDB~qyXl;U
zH7}xjuewSnY%?UhwE&M#CV<>l272e(0|R}ZX0{jDO$f5m@SyLun_VxtzcV;H%y~f#
zUa#VIJh<*EdQh#Ll5yyD%=6=7d}YRC8O+T84GuxY#l@tj=jSKXk==g1Z||)SOI`b!
z0&EkicK@l3Ufa?B{)ew$zs9AnS=PNQ7sFN7s1zq*QDYLaP2^3R`unGoatU0XX(mNQ
z#UnsYssZ%d1gytIw86uKU<$1RuuUExZ|{fX6chyj2yIc((&}$4END7#C8g_jIz$?J
zkZNh&R(qIbWlnD3b%ImJs3G}KZB!mOb{A14Rn}_#DLlitgoKBg06{Gq3ZceBUV^uS
zIwmI@o-K3)g<1_|RC$By>3Y*6@I%qbUt>Oe_)yEr%1VB$HGQRA=LFB7jX}R|<MV+c
z6Pj)%_E0trbzEc&HY%n73W<C4+IR18rzl6Obno+Pl0CQm;T3Lj))z|vyWr#D_0HDW
z=_xuGzI^%eF(3!ISA|5<H+`j`pnwn>9UbL-hCpne9j-rRCx6ZBywK6fWmGQ$b*v1&
z6IV;+%`x39t$k76bRQGS3NX~4^S}7pRK&=ZU;d<+Qa|9i==V%Y>Y4zHU4khO8yeHK
zbM*Vi>DDWwWX~iybjy_H>mA-DRGsn|e=-*gyz<jP(Tc3T+^(A(4Sw~i4>F%^^6&z1
z^ZR9{*WCKn>Z)F~^CH}kOF!6U?&4kH*~#uO0)ZGbA%q(yy4kEQ*skL1r7f<Bm-7;h
z1*C>8HN@yCdpWJf<ew^kOqv#whbiBA7S-)CbpEcH0TmG&tAU4$`<`S~_kpBj8$wzd
znUdpQ-Xt0pSI?gJ03+5ZfWe8uyKCVJ@vvuPH!@%XofP`Y)32!DqJW@@CxrvAHDB<J
z7+t8A<-^CbqB{37-C{@{`ym%+!Y661qt=Ab8Oy{4<Y9QM4#uUs6kvHLn7oZ%o3hq_
z!{s7)&c5HjZ{cJadr|EdvQ5yXp)5rw5fil7O15j!`~IG}fGB{fc$(@!Y8wa}qu11a
z5+c|&2|>R`e>uaJZl4AIXh%VEU*x8w5K_sK^@(6bDJA5jlfn(-!8_WE)Sw}JqGVj;
zVUYRqw<M7iPvU~U(Oa=I;B?dx!=!fi-4Id;P~OoGa@o-erUp!pe~JYKPm-WRkAF%&
z*@W4JSAwYntmSbAStX7q#!sS1Gy-rr2skKpDZi&r>OLbNh{r-5(?%A=ayjIZlaICl
z4I9jf)e8SM*JYKIhzML^L@Z5Yw+w*zZ8t|(7|~{qx`v9%+vD}Io}RI>vA~PJe`fpo
z`aaZo@BC~WyBZXpx7UpfJKUTcE~=`$5o5}~SXE`S775^3_Ej4m9PLceKdyi5T<?LZ
zSDs;ccIbp8h2s9BR+Y<?W8T!MZM6^Wm&Y?64nA^nA?L5K2>7&~KIH)nk7KgZZ2rmh
z6d;Jpl?FAauT;afg_^033V#7+V@un5E(oN2xM2{VCEe}7*fRckwNo|cp(=3;;g}Gn
zpoH>o6mas<{M*FxpZwi7?j(?RI>-Ji3oz)`YQ2zKTm0?GiEaO#e^bPS9Dlx?q@2_#
zoe=Tf&$kCaR~XG4K))aH@$ruR$z1)TgAEp4VZ>EcRrNCsPVGkn{KGGMpY!SX`L#Fz
z((oHp@-~Wp)I_J&qvU?CdH=~ESlD7$_$nwz^F+kNJ5&q|#_nf_Hq9<esO8p+{r(>o
z78Y3m4JM&WYio~}Kgm;|Vt(W^e*gCE&b+cRHNcz;=9)Y<=K-o%2A``7PB#HC`)TRK
z6zCvCjmD;q2*g-re*W)^e_?euz?tr{u^II*@4s#JJ-Ol{fBn(-#PM8s?q%2Pw{K5?
z{-z2>nG0|ypVqTX-Y6hF8U{@gw}m~EcZoh%bY~2r(kPR*HD!OX`z~5XR@b6<a-@)h
zg_Y|IAff!ru8n5TpFdAB#6wVjEd9S!YvsG-4p(oYq6lqFmTyY-7ZmEg$tUN}w)?+(
zA9Z$iy0)M1G<)8Va9Lwx<F}x`TRndsQFnT<zyHN*I7=NH85b8<0Yp@~JjGb<CICv@
zZ{U{GTuT}$DXFIC%0SxP*K)7GPwX=dy!1Gc4JV$R`s9)~R$AGXPR7KP^;B0Em8fD_
zw{P6&+I`j;N+8_Y(n1NOX3208=6ZUGm(G8{laB(gFHi0=GiSfK`M9Ij`J0v2dGGl>
z^QS)xZPy72+lS7m$gZQ21)=whw~b*IlbD2m7+wWR{?Xu1OpIF@21EMDvM+H9FnBQ|
zBcsx~_5Z0Qiq<juUY;FAnwpxv`SL|>{cHRkUo33wWHAwu;==<NYQvbv^4FKw-p{IN
z!I!cG@*g=Q;`i6Nc{R&-rwxn;Mkm~N`T}s8V$PY@6l~J~I}aM3w*dVl<J~)szTRFk
zjdw!jb}A}ws1Q*cl=#>;tl#=iICH?7&*~84I*=#a0R3+a@c!-U?Q*g+O9d@}%Ipfb
zY6*CIkM+@lpFKTA=un|XcGkg!p4mjHPtvVmJe$vNINrc~daRwbue0mVdM9XS5dusu
zzL-`!S)Xf}3qKn^i_X;84bi_V<SYcog*eUHBoLs}GDb#5a!B2|k#!Xvik{9o45Y$l
zYrTO}KnX2uZW_UES`xq2&=f#A$_D!S556ByC@Cw)i;0U*{&496)nz}{uo*?a+Jf@-
zs||WBWM*%_MdfgvI502}NlZ+<0a&dE6W?>CMKIRn$Gh`^t$?RvLO0UPP@DgG#m(^d
z#4v7N9t=zM9}YX&*cccvRp}EJXxY52TfON5p}#T^J6DaLjPzUAeO{elwut^!hdS;!
z#<G;&CHO=4XG+M1UaVpB=eYd6e0ktiJP8d6`Mon;S6Yo>1G;X^v8;*Lm{2!Zm#<Y-
zRp}t0$Qyu(J$(cyx%ORhiyH`FRB!JBA%PL#mC9=YH<j%Zd@+#vic#Ft9XK15Xh=u5
zsEQuuz?Ov@8RNU;HDF3*Xz$;@m)_dhF-3#S{Qk%<+o`IlB_8k0HeZxC%=Iw<tz#~f
zfTpZ8yRHd|L{@|HV|1U5O%=@?T-BH(fAyQvPjIyUL*q|&|8+_7+-#1xr`p^T(G5$@
z6d4HF9m`#KDy<YrCMdRHYQm^YKlX--W3<6x=7swhSOYX=E5q5ly|fss43(|NhCZ5_
znsgA5gLZ~$ZN{3~4~E1uFE1`ssJV@&-cP*B_CNmd3ee{thk(mA$lYE9j=|S!z$QQV
z6Z`-#*lu)N^?B**d;US2UC6ux*(no@J!@ERZ*car(XH8W>SNB>!slRu+EcHssl~rH
zWbxz2j|-0<KYkN<eLk-+>m@EO&O}9(BnE~pD<&qUFW~ZQ;wP*e`+mt|8~e-ilT}a&
zSGciR2T^7X*PU_YvhTI^wxwS<SVSlAWXVYvA=%f#OqGeVBNgnbh5Z*6M|9?Ve<k5Y
z-vYD~K-rM6FrUM%A2s$9A9T{1ynih%iDP48zN8at`<9NNMS#qaA{|1H7J(O46)JXq
z6$?u)Qx0se>XTNoOEgW4c{s08LXCtvXeio>!M(KesyWcjS?`|!g~;m=Fvsm5HAQAJ
zGC?A@Z|9l@Jx2)jJV4`I$;d`T^+I1@C}Ip}v^`3sWX6FjD%GvriZw*LDJhVE!c)DY
zwR5Acpz=77Y8XetDNKtDKK((bRM&E2(r;YxzlbcUIObfdEygvKpF`R5xt@GTqOJ1B
ztXMWKt#^8VF6}3<a)&?h4RDz%lofh-Q7zCRhVv~D8u}bnH5OHch^kVw6<N85(&t2Q
z3UP4sYf{6fDFJSfWH@4_{XqQ9t=gsY<Y`;DwlU!4phA`j_>gwe)&LW<!!F|h9k-5$
z7{W%^$6pYCVZOk>>PNBKBDLDmo<O0_rLOcuo~%vc#4<@##{RC*UyBVAXQx%u{&)v{
z1?;#u^BpZ<Lyi>7;3CvOQ1C~u==GBXKb($OV`psSE$O;$KU`LlpASC;e>TFtvtmdn
zNq3I7BE`q-$S2G|A|Asgk<IJ%C!IMI{qNeHjv4w?QHoDi_3>FDafSjbYqZ!4c95RP
z>Jzc%V|3cW-X$Vwd}Np<S+49L2b<KF)7k^ty$Q&8xG@HUpV&NL&(BX{1@WboGF*C6
znm@TZP0WuL7Z<vH8~F--;g@{J7{%Wu61S8n0k^2C_dpZT(dDQxZXCS_+V$YnQl&}r
zegCbh9v{!m?}L@TCp!Vt$}PYN$-fbw{~R73GD`*cH2~?QYb>i?=3iu(5CO=r{Ssu4
zJrWJ`r0WQTS~`q6pWh1+sP5c{+c$qC>S`eA$qkN#p!0+i#9s1eQhwOu0nwnUM?L7I
zXW{PErS-|WGoA<cdA<2~Z7H3XRVMszlP&1)_A)5b-}yIN0NY_8U9fZ$sF{3@po=;K
zB*)?C=%@lk0Efctqq&TNt?h=TudnYipo%5OW_d8ho(sJ9h1R=`s3vY!uEES#;xCs1
zofdjHq;j<l@Sz*5+D+9xMc$5eDR$I#MR&f)&i~`XO1Y{s-bYWay{mI+?>dhLOe!kC
zL8P@47cWB~(#UQJ0RaKK!E`}xdSS=1HYPaNuV25)wArcdYh)Qi5HLk-A<h322+Jd*
zd2cg=2NO@z4tu0`{9esKH!WE&Ih>KkYoR-U=U3i0=Fhseb|`WoH*atFb!<91DGKR*
zfL!i>S8trZxH7Q*sz1d+&F698HM#wqUvq`MY6|yYV*hdgKzZv;>!7%$ErFk3sv`w>
zViF@TLtZ?4maEh3xvhQU2LzlSJM^<<z06%0(~xRSNJ_F~P3YAoe=YZ}9hjQIVbwOk
zc#WX5q_%o?vON1Seo7k;4w>5zS4~k?_p05qli}oqq@)%O*Ei0wiO_`{G0{tQ31KmL
zd3ip4i4T7O5!0i-zP@5Bg9;!RiW?L&<^nXgZqQ=@<rJ#|$cT#KzS>$FK#(zGh3cjC
z`izLECKl@(zn6mJY4Tzbht%Rb)%k^yBUw!sswPo)*~c~$*G|H&PSPd1op8CpLhPg@
zw9QG3-8K$^-dZP~@i!2%lw<ERPUqLuTgj4agQ;YK)X_FTw4@6P3Tgv_W+j8b6Fv2a
z@Nh+W;FGBO`}=c1<^Z}h7Cp|aHu~hec-h$ruY%_wfe!)D$oP*R2Hz4Zi$v|-_V(f0
zl=dZBzC53riD;(5fj(t;(*>DfK3j?9cLC%mnb7c+>S9V<3k%&){gCrVSLv76&KZ7x
z?sB)e#-qojKYxx}$L!RCM##uMfK~0r#*&0@)7#roW<ZII!~U=R`Jb%#A4W37`}}L%
zFQC=^0SJ*3T3Gv*x9#WeuPT3=44ari{}V7?aiFOdZ?|wfiu>B7j5eifQVg&Ml>#J1
zyIEoBr51Opf(oX{u~!o91azr&v1y)-vFjxMdWPx_mn?+Mf_k*9n7m{-B*^f|2eP>A
z{J1u9d&+1UF@NZvy6_0?_VI#m$92{<bBp-PuF=lw-oB}4j3O*iVW;bCK-pp~*W+O=
zce6T3j;_W37rp+*Z)vEnZw|Z;uP|c94I;?3vE})<T=^5U|DIl_C&Pp5LcUe~M@v*F
z?G{y3F~tYWlhlic*u}<0#AOpxCGp-1js!0pr@K5#6)u7Mm(TzDZ5)jB2-L;TDm**?
zy)DpkY%!QgaPjv}T&8**W1ac`gL!LHj4Dtj)7*w}kfreRELF|~qCpw<nWQPy;egw-
zpWo4s;9S_<itUkL>RNmkKBzla_KUOSphrAT*)q<ck0qgRWT@I?d1>Hna>GteU8o>{
zDrhv~G;TBn%i<pRv?6hUA{&a}!wq3WqK+$bU-VYnI;Sb@O1D!Y?(TUV_l!wu-1*9d
zD^np8*ZkGO(jxR-qwqI>Sug%X!#Ge20+}wYT4PSdPn-@fTbwN4->yl_$<)R*2F>S_
znf)A(0e&5Nj}v20P1|sK9Rt_&P^R=`1)Mpq<msTvE%;a2T$cRMn`_;7$)WUBO}eC-
z@&J8xQDG;#Z-vr<NYONH@k--3`B=#;gP7xW(&tOl?N;+URWh$TCDi#Ii64Gh-s^u*
z_CU_Un-#y0fSs8}m-3hGu};}v2l*sK8E4tTk2#9a<<PI}y`9lN>61=XDeocajF@nI
z2^9|iTK^S4e^*J$^|hzLX(_O=QDmfOIQYx?NzkhMil~G$6sHstQ>=XlShI36O8k0-
zoU-70-hF<Lg_U3CZ(0(PUR0P}?`cxR-Itepn_qc`aUi8`t*@EOsT<-{GLAB9o1-)u
z_WtP0A8-;xms3{nR7#L!-VHmyACZbn(Za@ZkEh_9Ssp9XF;iT`J?C1_kUWp0_4=m=
zT2(yWW_5_R?0x^}RkcCY?s4Yy<Cz*?aWA!_%r_+gPv6xdoKzduP|+K&121)sPJh%$
zyTH`p3Q7bD;CnvF`Oq=3RhkrpS{~?E`l`}#l(DHp&Cf5Fqq|UIs<G%2+e7x78Z*!;
zP^nvo?f2&PI6ciMkG8VvSGD50;NLq|Ucwhxf_%frSt5@nJAP~5mkblQ!}eHP!*{Ey
zkOznL%ku}gHqY>r&?nt0^uF604>d)F3}71fH)0nU{#ZB&J0j@PtjrPI*<BjN0Yks%
zb{w3Y@bSqQWb@>P6-?x?<i{6}v;X|s$~tbnCXjb`ULy?daMrs|&PQQO1h1E@OG?L3
z>KC#=@9>^@L5B~Iz`M~<hBDv%SxzyVLqjHU=rvJNQN7N~&E27My8!$oAMo>IHC5FF
zJ`^bhg<H8^r74xNvhpZMet7l|4>#<cobdbr=gjNs>gxEEYy(wAl9lzd59o{Qf|>0l
zK&c#Fy*NEkj`k+PhpYYmI(SFK|HR#rNOANspWUDLmTZcr3A>#Tx`~|`eK0!d=vGo9
zq!<I0lpxzpxlBBTM)GhLwm2oOuY6g{n@<&-<G(AiC+(-E(uUX8*1GHIP5S7m58vPc
zkWLx9X}xg(5|h6U>BYTs`}R*75DfS;s>-tr1duTVps|ccdfzgECn$-$2=^zNUSCwt
zslp&dz9LOH{d?FW;(R2XmocNhqFaF1J^X{D?Qxs6)sKoN6^cp;%Ia7Fr}DJx`!i0R
zDxbc8msX4V7}!hB%KJK&##Ux)3rWY1EXu}~tKE<*r6yYpi<NX0{BcUnr6S8Hc<WhJ
zYIs=Ki*ld=SuUZXy*Ay>K7A750JeE=0vip41V+p)XxvutahAkGz>4P8p;UgW$DYrh
z=f4Xet^WU+Tr)d$t{@YE_j9N{y0)`6TrxJYJd*Ue$f?eE=f7g7ou8*aV;0=ar_(G6
zd5t1wAg%9DDP4WY<-hlGNx|aYPmr>)=t3$ok%cYSyQ)}9%H8HjOuYLUg`&CrWHWGZ
zu>0TTofq*<)E@x}t+k!3$g~|VelmL#nmGMJp+V_)wqE1~WM|Ijd}%61;)@`<1+WwA
zgj8%BP<xc^?d?ZzC?%LuKkop>d(ynyW_Qxh(=PI*yZau{%RK%ORgmK0(eMK<$8!i5
z4{!Yz8Cg6G80onH04XcRGR=ZG$2&ZrdRYQNT^U3brhx0dbu?+_CFQ<05*<x1EY^Cq
zQA&3swSZutT1lBHp8Iki)h4j6e;$Gq3nmuUDTAcnlq0aIyTOx(7l3Fc`1$#<gS<r3
z_mhC9q|a`r@bS=PPWGZoRB)bbFA)nd-l_@-Ni~4K;vMb@CGc3CSZHiC2kyIm@rq)}
zKu>m{m^Ax#$eT9;BI3iy$o_-15sR|M$nW<>{`Wjt&g*|^K!S`#+Uy4Q_GPm`A)xR*
z-ZFq$bcXBz<hv!}FkNe#AP9t@j5_Q8FNC1FHcWshJ^^Ba5AA`VMx)D8nD+gIk|y_c
zt(~Q%r)Utsdc&t6Qy69Hg!7)|%iW(djZ4EHrN}OHoRi!Y?Rsp3!m?|aGaNDpwYA^_
zzmFZv|2kV7&G={<8Oa)Z)$0}%KVX6s<wG@_)6-75@ClYcS%&{7%S52xV<H47DcXlX
z+!zP02|9HDaYm}|O^^Z1nmHaIk=UKv=I7@tWoBk>GGxA=anbpwCUoUL-68jmM@Z=S
zO=hM^lDQS&FHEvwgbyYB{_aKp{{4LYqeYhwTE|V`gCE3peq{%o^#*KBRm}n0`ymC}
zW6tqM-$zHQ_l<$#rcy9^*KYU;=`-{w7-+c&(}foHOCe)>lVaHitn%`}?Q=nksNv^z
zG+us6wMyDh)t=MY={7OCwRM)3bJrmSNL}oA@80#gk-e-2QsarnO(^*O9dZ8r`7;qr
zWCt2bN^Q=6vtwEgM^zg^3~Ptiq7$?0sllWLP|2`%+s-RyTD%WjYX@OXb*zT5QdciO
z`|h@`UL4OjSwS6UftQw#tViCDzIugT)!gih1^NByreUl*r2s}20Jz*I2M7J&^@Ynf
zOYbO{R2Cf_z0VOW*|dxd&TWwK=?3FnI?QQ+1DeSfAmFL9z8e5`Ogc>xeyX7An!aH|
zhqT3CkWZDqzJiC3%?HvDJE4{Oy)%6B?bOzW&tN-m-msv!*w@43u7lctAXaq(U;^p`
za+H}P8}5UFH0I_psI~s)59v2J&Su(-6?z1&W_pR8pPnXh8h`pILtyaee5(d)bttoD
z9h7UQ*K(bTQMB>by=>Xqo6^nT1v5ZdIs&19W1SLh`<nzC2%9w3+5f0M1hSInEJ$<|
zeGbN<u|C+Hs_Oc4zT3WQZej5mgnlWnuTI*dn|49`MS`83-2)8kBSuEXB+$D!Dt7Jo
zls!}soAd2bvC+|jH<9L}qqEHp9A<3|FAplQcQN!hpBi<3bc=?sO~IfJT17>_(HgcU
zBO^U2MGlYSGKTJM9r3N>^#d~zv6!-xMp}eR#=%t~yAk5eKiw(bUG{|hIbh$)-w@b3
z!|0I_%~+5mOD;F8`_RX?3WOj=40QAsLPiY`Y>Y$wIhqW^AhokIzYbt|@O8oB#~Yl%
zWgIuxy}zdiYmSzoQW!>o4oDT9H@|*yOpKO@h6(5a58tH+WV!0|;5p_20Ri`bIDUkG
z_aQK>Q+1VJYxe(H3=caAJW!8D!-Xh6d=PRe($kinRyYf#q%lL+JUTKm^bFFT{<en}
zlKKNENqk3kk{iK5{*PGy@&!6r#d!EI?4;7*j+%gOBzJPMPL|XDaaed#(rf&w7P<|R
zXI7JEc1WcedEoZ^UYu>l;WWm**pnUfhRX&C&lMkNQ~U7e5W6{B^ZUaIqod+`!Iq0!
zQ-NI=YyP4(`$B>S#GE~i5eIsZ`a2}HK&gIhd?79LfSpf3BE=TOn{=#zqC~-uqMkVU
z5>*A#7kMB(6jg<Znu4qQ+(m40Beq_>px2vh1o4)UMz@ZRppNTHW=;LBMD*n3j`l08
zi?h<bDJ0|idc-Hw11$=Nd$><ZsUEO@kUZe?P`OubkST+^YK*l|f}LT6XAWC!5k>|<
zEBq)w!E?!987C9=Fd`9Q)-T5R1VQqVAs)uI^kPzeBF^jNA6@UU2)1a4rMs1>DSzh9
zd_8bjL=-15#v+$i8FIT}=rvEYu9hoShF&I@(QTJk1(sF`Cc)z|Flqs(ISH@rgBx%t
z2kiI>&#3QLm*<u@7TfgT=qR5v5UaP*SROu9o-Wd0X4cTqxCWVQFAfe4yDTSLe%^Y~
z6->ky1!~G1rT^ZubQ>D-zO{OhvEsst<bc*HU&kfe@0xZ@(t!NAbh%JQ&kqAyG`GLJ
zBQ;j#MdI<<v5D1u+H06hXB3Holj(8!Ka`a+(yglx=ynpPV_%p!!v9ySe4@GixssBS
z1#p$0f#X*dqUUXSS=o5PeRXyS2^_)`ECTB1AWmjl4@A=nv-YeoaT{9t5JL0?9CJaW
zM|yeKAFm16KV?P3gjyubGago-27BTBS|2r~8dar_(zgd5Sq^7NT%qeG_1^f?j^Di<
znc{-0?}SM{xyq;Bn}{G8-cG+2=bDKu%ncn6q0Hit>zyDU%N#Z@(%v8$P5ieELVs6=
z6&O2WQ2l#TdY|7cw*)qgz8hERpO)SE$*z-AI(dVig1m3W0UJF?6{RwQG>+*~1`RJt
z5@SyYsyJ;V?qI-}{E2B!!7`9KJ+eswS6di=xUiaSH@CY>;&&ywH-%8hu2w7PJW1<3
zL~jZT&&3)KDOS;W(5^##-?EOIU6)yKBBWN{?d{tpV{UGt_5I$f`ucnC{QVp!lbnFP
zlIGg@lZTIw&qTPj0&B~CEa2}V4nP((FCgjvnQ8bBm#k|$!6EJm5J3l+I@lo%>$fpz
z`h%jwl}jRcA<%QMnNAT}$go=5x+d=k!cKfgI+}QPf+OY*Ro9dj8W~}f>Y|a6Ay=}?
zs*bI!?wA#HE*&5L<(Fc%9b$b($iv2_*DHLwZ`rc469Z!ulh`WdO&i@TfFRS)IRj7N
zqd5VUCd{k0>38ze{!8Ri$K8X=yeJ7I(v=@St`7j<j{v#hp8<g#duC;VQ4S~5gbRGg
zlJwPKj4AZ@D1-3Sy@`K`uIm*b2sk*_n|?qJProx1RM|%Uif|}YT2{RLY^tiGC>!0R
zS!iusoR4qee$un3ygOF|!-}DXL?~L%O~H1izQJz7l<*IX!i{f#;|%grty7UOh9oA>
zfwHK5Po2{d$8OV+#A7bGFZEU=s`lT~k$R719PQP=9&gVug2-lqm5og=+WV(PkHHN2
z&pOo)_ebeQB8c-4cMvoCl`%hVe~qp=Y1V@veU)V4)8#U66=ed#N|<|hkv<^y8X^$n
zdlHi5VCI8|ON>oU9<n}VViL65h7oXD@EJ`>R~{>1u=leX4UN9teKw9&hW53|TI;W0
zeqpyqp)`H!YWH2d4ZXQUqZ6{)$_>*qP0V-|o{FXg{~MS{VpQtt>T;`P)bJ3NRfhq$
ztgH-1_FC>Hhq?%M2QWb902(viS4)kXbgwM*=09dM?W6TIJ`aH%(;`O=_k-Q8*j6(@
za$=3RXE{S^STx0Mlx<@iDE|WmWrR~zvc=mA3{!QgYpbAncA%m=m1s0H%>O*gSz1qg
zNR<9kZBr^OP17|-lP0Cl!-9R>_RDwPd8PN6Cc%}K_!(}-nSoTHt0DVI##|*Ay9Qah
z=%Ke8KCeDjoq1){Fjt;Dr+XeOKy!l+hWq<VCm*B%TxJ6{ZMgsZ<f1e8b@O|9a}AI#
zAK&bMX>4qy2GBfz;+0@j>*q>ns$!iU9cqM3tut<u!PBGQXbcj#oCfH|t?UxlM|u{=
zV?h`}4l|I`F3#ya@{YN-l><5(MFnhhdk5Brnyy~I96N&;c#sH&OhkelIuF0bOvQlS
zFVn+EN@6N31c^BUjg-~WbQ1{_=Ksn9;3EiJ%<8a&9|uOs1dp<kPgEM*7eCj#%Qnpa
zsq$%&=2Obdaaq9HEqgM!O`0A6%dgaHyhOgzw3VHYpPy%===|(V*BIpM&i23N@34g6
z9R;<DtfEC#c|skcJl2PA$>6v2yc<Vq-<BS51?(7ibfW7w>*A{2%Avd4n2%{iK=8-n
zWalq8KZVoPr7+a7x@8c2N^-Q0*ykHhY0_THF8)fHzOP!5++p*E;!P!GUX)p=RvJd=
z?HW^xNGi$<d3a~dh?yV_)Z}iU(&eW7&U_%M#1<kDh$VOcvF0aztSvL_N5fSIfpMrm
zSx^N+#~rJUguXgBz&87+o^vGCt(?@=IV8G{hd0UL!r80Y-+$GWPRk2X=b_hcGK7~<
zi;X6y(9c&J8~R|Ra7Tw5n)qjtS*@n6eRn9g!GEm8Z)Kky*A-QDFa5}zq0T5TISTAn
z^4fuB8ZdZTpfBAzvndI822QHnOGbXWuBaU?kuahQ)KL@`t}uW_&pY}V?MZ`^td05K
zTuIgVQ*o;gDxuT(^2xcb&!eIni1IV@HQ$7?<mYz&W%+%)O_HOjogGqT(yX|+R1+$e
z|5m7LN|JTD_shy=zRUO{co^yE6v(Z`FkuCp6N$KDe)8P@ENNxMB1$I`U_1p@t9yyI
z{<-C}z=G7ZcU)ixFr_Q$B{mAUdkzj<N?RC)8$X#3mK#O8Mx)-B<2`xK&Tge#cU&Jf
zu7h7!z?)knDWeq2ME_nl<<292Rm*gx=fRTx#PGYh-epQN7GNA!MON9;-%EtVHBnNd
z2VVSPS&N9R6x|I^pP+iqXFkGWjv_SQGiQaW>ZujF8N}~nG7n4K*>d`__)&ax%%Y3-
zD#h+4*gyk|pp!LF-yBVSU9X`euZyKpnf%ItSKp)V75E~K94*Obn5?(sF<X87iBwg+
z@(bIDz`l($8cxpXw6?tv0fYxOYlfR3VoMf^6_WABWjzBMlP<g$I?!@Teh<(|>$LLc
z$xu_n<H#5|CB9o(V*PAA*X(kL*7=~dcwWYd*<cqwe?X*B?<c|nb+c2U%s#Z`w~Cgi
zgq)WTJjoTQqSc)(XQ?KY`GrDy!i5{p4)M?+6m65INpwq#l%}RLzM~^gTFcK60WXx0
z#8nFHm@sdd0ng@EcXvmdf9EUbot@6w_4xRX-UJj53-n$azm72sowWS^S<PH_W;A*d
z{zFU4iR06msg5_Wi@2oFH!pMv&>^fqo3kZ1mQ{0NZ7g=sf=Qbn(P|lIr;~CeeV~+=
zr&-vN2(^^~|3QWR2%tef>xT6}=8~L@Z1KfF6#xS%ry!eaE3B&8-vNyHS{!74{#~1F
zNq;|yM~^PSUYvOVcFLxiXTg?|?Rk)Uw&kx*f7%{!>38e=77Ck{3~IyB1e;XNqp0{$
z)`^6yg^6!(s|8DXmVJEOpRe4RxNdWF;fx@}#U~fbzB(%%L93&i%E}_fsiJ+jJYhv^
zGSe!K@>oMYGB9``oLgi2wC@Z?P_mn^E4jMNKxIR<ph6tq9~>A=ga_Z5pC?FSXU-H0
zP0KI)y{J^6#Y91|6qlT=TdCX!vE03zuPGk6@&CkUZFyIJYF-TXnbo{d_c`L9jD=e?
z(Jc;VOJzT=PMGMJqIV!Mr$&PIJP`#WfhwZ)IN{S!ftG&eaR-_O{$W2!Rg~85T*pU?
zj=e>&eGZ8@xYd$el2$l7BpsO0v%L))`bLJOaxb7Ikhy0+eKP91joAdbvB(O#JW_7i
zk{7pk@DaM*Cez32eSw!Rea@)$4SjO`&vWjxJ8Y7<TsF-pdhMicxxI*Q_BGUwW%_TD
zSPeOo(^ZJ@t~gfNeM`PH!*boF-@OUd{^!TDm`G8#mFJ2I3QZv2Sk|{!Ohhl_9uXZ~
zHw!`_<yKkVC{>_p03Y9>2JCJGgy}dFBn*t9mz(7c#%&;VL>vVpWR{eW5)(Ufbar;G
zTv%Ahy~*tZS&4fW2)aYW1Ox{yz9$uwP;PFnWArV-4}XDwBn0>t6HuFO1Au<?z1--U
z7#H^epp$j@1O%HOG#{iImZJdUbNsrz?@CYqF5uq1d#fZ2A}mI&K6USa!*^R$^oJpL
zO3K!3^NADK{RDQB%(VYO(eHqeg9?apy-iQI^#&QIP1GC*A~;S1tr+bh(ASG;PCM-?
z_WJU<!)U&0(=M0h1FnLR+u~hcS>B_+d4nVXOn=EZDyo?9;0ZRFg@Wcc5;J)mEUDa2
zL_-g_Jr;{zQUAcFG)$g`=cqTh|BuqXI;zUI+xFcwNSCC9fCxx;mlA@~AV>&`NOwtz
zbSolAE1`gtbR!^$3J6ltAtGJUb=Ur#d+zzZbM7B^jLX13V94J4eQK>W*PQd|9_Cp*
zJbhMKsktwznSAVFTIcKQ+S`3fnL1V1SD}F_Ba;_lD4L%d9KOgJ(kdV@YG^J&9?#e8
zO!#UoB85h!P2fS)JlSxC97Ut~T|$(+K1I#*%=l<bD?%Ym4CaS~Oq3VB0)wvco4Yjm
z>qQ?+J|}$@z!~%0-MLr$@ko8)GG}l4E27Abi|yfos3fkuS&tsW*FXH9rlg#|W~r0;
zJXU2Fod{o|_M_jkx%!8(SCOtG0ko0^BgmjA>D`cR!(iPPcfixG7Y$WQVyPDmsmC))
zz4QnCs1#NOp>d;k`TA25+0Da~oxam}Cb`UFgCgu=1C!(-Lp{BSKoGq#AZTst1c+cO
zVbVv;8@;tfp+kQFh|T*KFDQ5Vb5ttwbgmLJh-U|YR*|&@fX1(Aj?s6hnJYoj$0L^3
z^KH0eLT0fq%P?KigG)?QbT}3Gj0u^UC8;1Gy0^PLBoI!__~n+WY8krcKH0uJmKqW>
zoBmd?^A-lOc(;ot$K`%V<)=^4ac7L6cRBg1dwk?R_`EwP%?Zc4*L|XdmOp#^$kjcx
zCOV4w-nR#43F9Jk8h>{%k$3Fm-@e;yJ`#!^^@(b#KMX7#o2{GsVB~C0kM$9+e3bsi
zd|rL`XCCUyw=&a1?zNv01)j?dW)uyrW4Dsg)qn1}#=Q2r-zEg$l$RhIVmErNHRz#b
zT<7}W@JkZ6$>|`v575)ytv%r}VyYixHTk-e#;SPAEge*fp+-D6AepNJY9ax$w6r8k
zBE2bJU|dWMzD|#;x`1z<&0F0bPI7z~ropiov&oEac**_E_O|O5oXT_C+uMyaRui^W
zf(VV6V>-~J&G5K6ITL!a<jj-P(^p;lgkg&Sb6K7nVPj{f<uh;Q0jlF3kit_zV{-xd
zmL=D60^CzV+hT{^DiQp0!OjlnZ$ucKMx+c$WOI)e`=*VICn?Cu83LKpe(3ozO1zcw
z@JRDq$1?LRICTjLlQbyLkf2DBq}tqMb!7CIvS?LnntC9IS>_|(UJ$m9Pq6Hx7BMA)
zPy2V7IigXy%s3hqP1wkW&>*90IPje=D}!mU5-aj$b<Z|k)}Q-%qFne5w+rHnoLs*2
z0Rb)HinEy#cT~GT2y-hfH8oW{@a&{Mu%p^Q5y)ICa-ilUsJq*XVip!2G%z*2R&87i
zq}b12zb0bi;?^ADECQCE{BDp#aF^R5c8G(cstcmkYNL9dZNe&#X}z#7a3_ag+>_m0
zUGMAWYtUjKkZN;g!J3<$K0mA30JfN<H=t`i&{=XUOVD+AjL7p)w_8_~=aawRv$Z4t
zfZ5uD!V>Dt#B?SJYVkN4Qd>OvOTqsz&gui#?d~22AIqX~M>qG{)m4eff}(L@H|z1l
zgi7JAEun`P1qJdXDc341%vz@YIviks{75s!S)NKogLl=cY%jaFKvQ3_?Go`*Rj%Mq
zI)v7n;WG!>1Pzmj0>7vPV?&J>xu0Jrf^cyM26wyT3kdub9isqt-RQ%f)I5L!&1ZoA
z`z5H_P*L{i&*dKAk}n@6Mkuq!FiKS)!DDTkH~ZB&0^JP-HPNb8*IN)C>B;O*xXl7J
zm%FryQMZLo#|~h0eUlnTqJX`h533O8U!Tc7f#P0MUtfRj^JmoyNaNYjibsZ3Uxw5b
zdP#R1O~5)_934wez-}O_Q%zMDe*OlXx}?QlzdnZ%(pvrmVMBvdPSsWX+4PpLG*ZMf
zB+h<8b%}1bxG{Xk=$*VpQK%qXCM-WchN2?TU7KayHRvX*s_rb(m`=AoE^bo<osx=R
z|KNAsJn|ILo@ee8o+j}d<NanBi=(E$#%9giXhcPyRUWFdrTpHA?~@uc%#X$w!Kkg$
zR%F9ac2#k;siIcWqd-g|=Zgm&#pLto!UhMkT#o)0^V2apCA#_$K2IbWCThP1>(8>B
zKtW;O-Q3Fe)!I`WQ>Ws~1yaT4EzLH4nKEnjRSAiSm$`X(UQBw9I}n`(IgM8rTYyR#
zQ_NwE^4W_Q_wP3OdW28aZh$(d5YTc?0A>aBpk)XhOM_-O19=&3Kw|EJrj7Q4%Jx>}
z_?kU{tV1C2ZP`YP$*#c)bp%-EHK0a?^kcidQX4k1C!6gEpuC_Gc#qa{qy?;VB}G9m
zNhS~~^DVmAPEpris!ET?2iX@Wz34@3Ddjv@Q{J}!@ljW2$a;B!K>A|)=Vx)WqQ%4c
zOnG^l=UZ#tj&<0ZJ9a5F-S@?+r@b+4q<;<z^@%%X4PLSmL}mG5`0d2zoSvPD85G4v
zqO5yd*)Ansk>Vg+$&nqjb=mM4>Eq^ZZ!fRdn)A68?k*`ExIobCdDeKa5xCJyYI6T-
z)r{)*XE?`f0puEknpg;f)Jq(@IJ)Zd2BN(yS<1G{d>%u@MO6$B`=(G&XBlq9NfSCb
zb-lRY*?>}s3t{E_W5&jI^0jzNs58#3SEX+EdcCT(wY3@WV#4M0pY0XCe@}S`nwwx|
zi`ll&et?C+NX;i-VPhLuuC1WK9L?`_+BdQpc#4HxC5^A|b#O5M(#f>rQ{7a(c;J)(
zDtU;&h^Hj-Yvm((A@&nTmjwdnUE7^Vechzgmh(vub9<i6krs^o>5T*0`__`=@f{sz
zLj{#WXTu#1BB81w=aG+mKXV}`Q`1a2gSPJikGf-@RcY#;Ds(K<x5pF@TdFF%yz8H;
zWz@aNHDqzH>7JsIyi87ta9%yc^K8h3s!MhjBt-;%pnJzCHsHRgt}a+|ry}1pl8v3E
z$y71e%9QlB3$c`)f$mm;-Zife46+jfcaq;SNdHlNp6a$z99Ph5R}_(sxzU7+g)^n9
z7Zi5ch@2dnz!UUdByNTEbQd)^l1~HUVw6+vPR-TLU3#7?GQ^ZC3Olgf@@kk4HR024
z?Vb<g^c?Rj%P;B`-Xq$hqG}=vwIucPzfynIR<XWMs83pVqISFg(u<J4p5}hDOL)e^
z&kl|((~e$KUF5A@-APm}6Xhx#a(nDf{>GJ!1xJZmyhgr+5c69cn=+|!GrObU!kag9
zq;qqkB2r(TB%FnSF@S2aRME)goUtmmQ{DdlO{ZdC9F?x2%<Q~zfs1@4Sje9jkAr@8
zBM1<{ho0C`QLUj`Ny$Hy*<rHhCcgm*$G`$co=yaEaFdPGt+$zmBXRaN8JUBm`JnFe
z1P(41@+z!g3nh<T7et<@h45P)A;O;)Xt!saeu0x~3^VY&U~}8HiB4HH@cZ!<7Uqz@
z;>S1DnUMp>4!p*UgdmzahTB~o@;^Jq1Y}+nk9i!~mKzf`onc{ptZIoiS{+}l;^HEH
zozIa)U35A3k~(PIOdXxH$#nF&2n`E1wQM+DJ7Ye!H#rl(_<a<jr*{%qg6kIKHqw!6
zpxtjm8tqR;<NeSuOtqfWiU)Fr2OdoW&|F(e099~E&F%>mw}CP-oiOJk=+~%$mNbey
z{RhR#!F>D|Xw_T+e-e_SmMkrDMZ6`;MM9kP?<-pts;ZN+b*fm8aIFJ(w>M+Tdv@_3
z3F4REq$BJv?z1jZRO{}-BhDl#H|qZ-(6Mu0kXFunGdmFE4-E}mxo_V-29<<f5_AYX
zU=zIuWX}hD0<?&bB7@?npLK2z1I)~(eojo>Ed@sW=eH|48yTEng5zG`RcRc7;(3=G
z;@<JLJ&a|AqmOrRQjc9Z7YE{!yG-qkpZ4TBcTZ4QA4AIc>#2SuMt-tvcAjl}4s`CC
zV>v!6LJ<*>Z}y@>iQQ};e%kX$OHZUix-_)1`v#6lI%QU}^_KIq516>b2Mw3cran6`
z>e5<iBYPNlp;qM$rs+G$D>CQeL4g=}bLl^Ld_w-BFcuHwim87H(}h%4;#tstBPO&z
zWfrsJ!Y{{NXmu>LEsMX?_>pL;hXcBjP6`DK1XaG3CUdKHACm8@(Du^3F!j;gxHr`q
zGKp_!BIO9&u}@%Opa#AlHf2-tb{9r9GbD$g)flo2B@iWIRB5BF2Ce~zAQI3D3k@B*
zW^|E)!s;pykG+3{k=$%=zknzbIGdhj5mSI-co>uC*4rmR@xlbT>oO1ccztAsTLi*T
z_)cCylj!WHjmN}PVZpe72uj6tubX?oLiDbKAie;do0h%@7AB5;UY&w3D)z?ZZy8cG
z_7J8&5`?}f*|`CqDnsV6LBMPqc4=^M@DGF^<nkYZ_a3TVpjYpXygtVjtGx#M{UQdZ
zyQ85{XD?<1;!NBcjbtL51r26dqyzq<i;I^{-#%662{Y#DWR%H{>ZeMjW3<{l?0k?l
zAWCeli@z%3o4m;2_B4Wwd^=l8aW!#Fr`-9i$I9>{U0q!YNZrj1^PGywKLnl!w4^!K
zcY{KK8)=0^fSZI#cC`sQj@w5`@jxKF1I|5FTOLP6j!P76G||}n<nlOH_M$<+d;Vt7
zd#9I1s*^^_Ku2eQNSj<ylC`Okfqr{?)9L|xGbdkomU3{krpCw=eceRdRzZmNQS?`r
z<_`ryKQC0@P{UjFq@-F4y&;6@>a#)5IB5Q_`H-n-lk38l?bX#)w^%0gfWrs8h_Z@`
z2{DuGdq^AK6%^b98H>Rc4vthSOUw6DQ&Vj<(*Y~j@Gz$Q_a}p-)@yUx+=^H3Ok{#r
zr5+-Sv-wcmvHv~prn}vuORtwpuL^u)V^`UUJWx~>>lRBZpP7&tEEO{^E>Hk?fs;Q?
zhT723MNP5u45KXU_}4bg0aiYW1Ka*(n3}4Ok0j4ayFr$!i^eSh{@T~CUr*bh<}qtD
zx=2rNA_Q&l+z$8xjAb4^iy=ND<+c9Jyxj7-y@tlOveD7eR46_Ssy&;|+KPqp1v_({
z*_bz6d*$xMuwzDGCM-2xp~j!Vva%OmY<w4blT6V!`{B;^vbA#Y#@0JdW#Hv9zbRQ5
zxN^VkUa}Pi=0?cf1WaqbQHM~XOm0Yn$Rlx3D4|JOjwRL`Ia~MFJoWTm^xPNBuwObj
zVk5_gra<!apj*rF<VMUzKC^GjQ8dSNUU6~vkTdKV=|w*&#JRT*!7K67xD=!<EE$$C
zwKR0#{l{L^PsexO&^s!NN%YevAO6CUAKB!rVwgFmQh7KyQ~0lpa8jC>H|ZI5iwzjn
zZ;~)e`$;Ijd1*+*k=x?BxR!#CT*BfH74ZCWSlbg@s)Dy<ZP}UNB-(Dm791m>+`Zr}
zCqPC{a$9g%pUz!FQ;OJoNZ8wqwZC=5i?zd60K+lTnT_k#r%xMCcIZ;`GZLt4-Q2(3
zMvNK4J0#*gMqqDFIOzt+#;xoga9+jNc9l>@f+Z#7RBsQ=cz)~1x|>OYmxBH5^Ooqc
z3@7OWL&BN#rvhPb-qg&l$uMvYMXVDfCzypB^s|S!f9@~jl1|Qw$5m2v_F`I<<~73J
zq+36@aUZvn$weanOp@QSTnv#CuW7Yu3|U?_2USnB@D(hUYuRie3B(`pFuuGucyXtg
zv&vZ8y5e=E=eX_lT8%J$GBQ#j99k>hz?i6O)I48$9n1JsxjtpSR!Z~l$?sjdRkcOC
z<|*xcCf&B++DOi{QSLoapb(gF?;&bBtRgo`nZQQ)$Fl#%ns}e1{JmKd3yt7}gyRNw
z14UnM2xlm*AL6f_1B$cm4z6=o8);crC^&g#XjaJLSU5QHBJzZ-COly}JYhAeSWe|M
z<ekon)6S}Ijd^b9Ir27snyU{V@M)|uim^>2GJhc^^(bfjdN(5@PgboTEo38pY0ojt
z)u#REA0>ncyKr|-2hw%S(F;XOaj^vT7~mK0os*LCQwZLfE+QoxNILr6fC~nEo>GE^
zg>)R0J$ly)P1HCg+f;ZuA#W&?vMTVW!A9XUFg`FCQKQ)PloB<s!<bs=ch4yO`gN;i
zq;$UT*|U_nX|Ivl`hKPmF)87i<}o%<_*oeh8!sn}T@dIT03WSF|M^%k0%T_CZ5DC=
z%I+L!am<~*9zr=7aq>IO$q!qhbt7QEp%6eObE-(?15l$RfjOA-`=9pIn&A5I!86eR
z{GdxN_=S4j=AWGSmvyfnt-VZ6z5=ce*Y(!!+pjCC;Vn_ccuED76xt@Jex_;H6%f$8
z<n&>D>!v<czIC;@K&eSN^&Dmpx3!REz$5Wv>)g9>C*@Z6JUO^<77cUUj>Qu3qupF5
z7=0@Uu2D}UCWXFMXBXXncCWUloPKpPYc@WL`$}v31$r57*H_0mqWE<I{#SAbENp~p
zJauz(i$32M4A`7eIES|Go3b+g5qxK3Kv>rO!EZ$$SRT|!44nwqENF?AUkN=lC^fF)
zvWC+45b9!q6X1fxpTlGMq0M4&_V+Wr=OTGu(M`a@7{DIt22+rt1`5)k=cEI%8ojsA
zHT79xC`U)F`-Y5pc=1C^jR-54<?X5z?aH%9EepmyRUYItaoLL+VWS2-i47mbD6mi~
zu~6r15%9QN%0x6eX&i@aHZ|;dC@srXtd@9qo%I+B<!4(6$hNxh4&wGhEvU4P9$hUt
zZ&`VFP=cY+mhHVR9uwQUyPJXa>iulXEr%@9ibFBw8zoOvl`rIZcIJsBw_Pyf`SYP}
z{W4QD4@0HDRx}k6n5<mny=(LVq$df6W<CqXk4yS!lr%MogwlFq+<NUr=`WCw)cjst
zyt(V!WCMNzI7sdJ+3{DvvSy~m@j*?iS*xD+!D*saTMF2AERP;NIzqFg-qzO}pN!d+
zF7%`bC^=R9EVCUd{0xH1L!?!SL`JV36j*a068QxrfENLvmz0f{-d5cT!Ka8puQy&k
zzGP6r<2yAUTAzW+u?O6Mb|ybOxS29!O9f*7aggd|(Nj@9I0j5kKk)FY`5U`&mtUWs
zt<KF^c7J;%G|y+&m{Mic6&KVed;G2MzF;J%YFJx#hfTQ69<NnlAl^WB!h{&O@O@^+
zVkHQL`AzUu3>Zh%^hE#AfuP%AB=_3p^||t?L(a^Hl>3ZTMls%@7{(7-we8D=M|lei
zTqNEOICf3%?2s`(V^-!+iqHrXPAYVi(&GAb87hLchph;fY93yKDk*0Ys}|RF`JB>g
zlLq+D)wg_HU7z}!6|?bZX8g!#RDNR?cp?9{FA;&)#WyxyWZzmOe(%m0#BK9^(LS(d
z;ki!zIcFi_F)#7!n~E;^GXmND_3p7wpAa#ySNmh2!B_3MHa7R`*RNcFtc6oPHB@1*
z=HJS&MGFNzz?+8v0dJIdY$75<Ct$6_+1}Q+yx!E=(P6aAXEVZ(*3$`WT(^Mpvs19&
zb0o}ywq7VWyI?OYE`9~5yH_nw$EIqm{x$|kPTPP<;)Ym2+x00_?MYeb>34U)Hp{2<
zZk^x}*izIvf4x@o2hyM{v_KeO^;ST?!<qq(#vZSBxG-66rE&&hKEkA=BvwE}DKB0W
zi&z8!-xnxT-3USzX@qUQmw}A&F84Fl&9)1CAsON>bKn}4#Sb1jAE9TuW-K1{oD`$A
zobqwL*>wIHMV<k-#x*udMs0_h`R1KP6hhuf%9F%u1hb(RrJP5upmWu%*^@|gYO}B2
zu?_1$E$!StfJ^LRJx4y3lLpp9MeQ_Y;b%s|w**hv$Rnf#PIOqP=c|K|nk*%{!h>cE
zpYy~K3-j*qICbyVZ%9ZfUbuA_j>b0&(M6@KHAy!wiy21VW7|a1Dql*d8cmtRm#FDt
zZ=`@t$4_Xi2U8JTpQN7z2=ptoj(*ygZUTh%1?&!H^r5LmhX9>b`XHLGS?g+&da~Hp
zYQphMDX$V@q%)q$2?%h-ga~vNq_UtCdZC)J;lskh;=w)*RF7pO`@;tv_w8S5Loj-{
z!?F*{jc5=wt?z@>Mx)RNFm19eH&WKt))qndJy(rR=i}urc|dXf63|q6F~CBTQ?A@f
zH=-gXwZIJmDdj6PD$2*p`!a@BD8F7b4p8quymxEAm$+VIXTd_4o#QI!yJYCv<1gQ^
zcvmBK!cHEMdcf{qT1zu>?Iq4Jmwh#LVgfB4kw&od<w$3ai?I|JTCB|y|H{Zx_%Uyj
zEAWf?WyL<0B^J0Xvf8d|d{prDaBAwR7U$jLcGbL(h%(*<lc~I|=j%Z5lXS4PwVeZ!
z`pWQSoB!8T+OG8P4Uhzj&ln|kI@SmwRTQ%#cPv14j{z8~Cm{SLo}PPkon6vLe{%W(
z`RA>N6O0=zD&FmkrEf=}`488<rhFbQyv+(&mV(vx8htW^c6KLfa1=d88&Lr)G2ggj
z`sXS>3lij>L2SlK_RaL}tWErwy0Tloo$$M|pLA?w%LbAJYp;m@lM7(6c2i?@nO}`h
zf7gzx#IYf2;I{h5;u5D!s&KAURYl@jhLOQy8YJPXl7RKM2i`s+)3mSt62m<2!Lhmo
zS>?rAi;uyA*}Lkh?(UTf09g`zFfI-aW-bFjyy*PzTe(O7nyCBl^oY^_ld8*sHR7ip
z)3@wU#uod6rADwLw5*oL#szkZSb}n%Q_#{r`q}ij<{X53?!nB=moF;`I8KP`dU#X;
z@py~?fex3ashS8k_f1*fzcxRhQ>95uOFIQpv0XYDU-$VEEnW`I)cZimG}Tj6iyZCi
z>pO$A;fRD$@`Ynp!k(0t@$w#)a+^`~=@nyjdBnm?G1z4OvcJ;W+lsO0HF+Ju6CQP(
zM}}l<XXMJ#bg1db=Fjy~7c7F#g#$xm7{XeA5=o^R7e9FS?%?CXQ4c!{lC9O@X{vNo
zr!bED?=Yl8=AQ>(Us}J>az6F&a{`N6jKBo6Ta&=i&zv1uov0H!pABb<gK)MANlXda
zL+62tr7wso)nSb@-v*8vkik!0hhO44Trodi7A*V?@%^hQsEfZrN3I<rU>flM4{KfK
zHC9GSTbf}?p1>Tv1ZM?WbWp(!3Ot!-`UozVTfnOE19o`+<Mq0?+pzD8_e{X#wnBDq
z)GAbL(*4Iju?DgW&F1FjH9D&A{|%u00jZIrtOtQgQPH@2<BM|7-7LHp>a&-re^3s0
z6cgUTxohNuy7#r6^aC^2h<Qug^zb=O!&Ka7IThC5OEjv3aeZbZo@PpLRC!+)^S{vW
z&W7(p1(R*rZQl5gqvb8TspnlW<@4z~+L>`V*MM!Z1K709^<A@kI8J^+t!h+kpaC81
z?{BV0tD}<w?emoXLJ;4o<Dn4FPnI!zTTgU&9IMWiq0uhFPMM1fnb+sXq9oYk1g#DX
zVHG%cPrLNNe|bji6UkO-N4r#i!$%3SB39!@YquK9Kj$(mV()>Ybpm+7COEO)1Dail
z@5~ciE@QbB9Cbz2jOKbAyrpsVbCam(!1{>P6Z-aA2T6LY=%9{$3Nm*mtp*C*hRKNS
zZ9dbz8h7rngfknUOk-zAWT7Fo()-Ppoq0paTE5v!1kDzdGgK=>ufK%e+9$$#eeYZ{
zQW?{HI+8IeiFBZHPjdkbk1lZ-Vc+$cC5R)I8MDX0K%x`~oK3op8hv~|G4rgF@q6Yt
znaQ{EL@58Qi%lp|ZqW`&FjLwuCQiQ8fYnZ`RMEvRq4ceuMp=dyyWFrV|D|Dp4k`Vy
zFu?_L6{FG1392XA{TeGaqag{_|G-sS=xGd?6Z}FVDy4~uw4PH3cAPs&zu5Y6tHt`x
zPtd(Rdlnd6<E8T!Dms_zHDD|yW1y)`<oa@PW@NUdIwk0{;saGbIkNT^x+!*iycrtC
z`2`VDb#_hf5p#aX<FA=e-#I=7DJkOz>z>rj>dY3X`6Ga<kc<8YmK`~c&+=AR?SF30
zwo_PIT82%68yn^~Yaya?*MC68`B5UzUk=}tI<pBWo3-(T#o{yZA`W!1Zaj>?vDrAo
zOD}6z^-|&O@yoDZdqR*jq3twV01BG)!k-E}_n!vO!UZVCKg5AH`3zd$#Mk)vE}~kY
zIm*i9|5w`~AmHqdxw-i`=r<<3pR5K%qo*zY;~GQgIhXPcKb-B%?xz+u_ZAlVZF3nl
zl}_TkRs9<FdR_0$rp-)5egA&l)Yo*N;$Kj-@XGy(_wRX1!O&tE@(NI7gn&85{FN-f
zIc_|RfV0DgyK|qSJ&>~d-OoRuDcu34O#U0nX!~dx#Y4k|+QvQC=!{z^`Ae6(g05kb
z`Z@8Zyjv-v47O;mvXh!!^b#r#TVeV6^X41EunJQ*^PcYU$0-6V_x6W|<4hVn9bCYN
zbpTv0qn0<E98e9<E~})1I~k>!scA79#RF5Q142g0!S_S9?6y^7W)0g8|IuvzQvd#5
z69YS#jl~aS4bN|nef{oVY_}y|UP>bn7_HEeL&kV%cYr+c>cwD-C;i@+L_`evZNA?$
zJ)_HA{9z;92EqSpwf#@>_gb9G>Mq6CEWAccz4Ra4zt8DZzm$&^d&5doQ*-Dh8~N1W
z0B28e$T$<ANqAd$y5MHmw~+Ivm^C}J=03**JaekJ(eubq;p`!iDoGx>^E;G)en)mN
zk*hHar<zRe8RtH5C@`x10k$!fuwx^^FsC#vBEL!<53!%Dud)FO-gSiEZuosIfU_fD
zelS*8RP@Q9h)Sn`(#OZ=17z5C`&Ic5bI_Qz!+S|?by=P#dyLn(0&V?S`m-MglkWR5
zym(q)DY!wGTtx_w1SVoHs&f7JpZ<@kx6b(V3Mp%vMVEX)XR`_nlmRGA`JBO3@`3zH
z5@}jb*ua2}3m|GT5XPQmWE3~9lr#iT0Krkp(|*^)scE6b@6dG;#0r?!z3D$ocJ+@0
z(Qvh+;g%J4$y#mL!1>GIkxH}3J=&G0PsVZDyc(UvlyNDk*Ta}o=vOPoceOZeWb)2z
zf%bnL<Tm)WD_hjjp_(cDEGPuJS^m%qtE)PduXY$W;0G_6CuyP%QL5-3hFMdp!39rO
z6LP@#Fv>2<b24DAdb;$QTgS*;m?2(lwnU=E7e^+kKyA1~_?C$C@LlfEeB)drzr_lI
zHTmQ0`l4i%n^cMUc_8nxlF~&b9#1Fiu)jS21A=;?&W?UW1KmD$4h~~<Lf_17xoS5d
zp*(^!!<WAE8tKG1xNOBk)+#5l*e<bn8S%rJc_h{;kGI8dl0@X0)AY#-0x{u)ENM<3
zZ1Rbcw2ho=;x(5AT}5&S!gR$#!b?}HY4DaxCk*}_L!C*_D)LGZGhTgu18-^RJ(a<q
z0S~-P`U#7`p>i(DW;49C$HsU#C`)sJ)g+=svIQ-6Md~nSKOga2x_u8xhe%a6CFPEs
zTHjrE&LkEsPMlyjsTW@qE=7hXoaLIJuf(xL#b71Oo}5V_7f^Z_wRNxDUSb*%BOt$-
zB;#Pojm0Vo+UEQEda|f^WpOrRfyk$l;nQ)H%jxdQ_pI+qxs)v40sL)D_~8=MF>d>r
zPlb)5X0Siv`SVj2>gmU)Jga=a%4}=9ose>X3Vyn%NNS%+9GMXCaZL@JBd}+zkig&R
zhA3pwPbO$LrrZO$guSUTzazfbfUIH!LHyUQ3Q4&1>)YDH?3+&FrCoK$eINb02^*$}
zH|{%iw9v&T;3_U#3+-N7kNws6d{(Z9iS<!m>ifg7DnsVP>&*O{w~!!JW&b_=C1OYa
zD;6<ov#Rn_3+aIa9W2Ml#9A*6^i=p}_K;-%FkKw1396uHDmN_kese0H2)y~|zHG?{
zARfsd7yO8i2}BvZjAUfoEaX1FUy`z%CXG)KrQ~!T@ga*6i{mS6rE<R=M1$<TKFQ-P
z(eMhJ`weFG=SWu6cQ3YGB6zwXK7Gk0I<L6I^f6UTHz{@Xw;!)b2R3Reev6}8pCY~d
zowp?RPpMjgmC52v*x!R&))p%O|G}mAUTJl^v1Mr0Ai>Q@>|q_d$^F<CV|5-a4$fzL
zH;pGnRym~9WjR0Yj+EvsFLLoqJmtBI^VQ=5B2V}0&mv3w^T&m+7%eOG6^bUG&deMp
zbO)QrJ^A}6ro0lIa&4!*=VPHz2YR^DU*9HgfB+m)Z&-p4J{j=oVwn)>tqzKj<ZCAR
zm_g`x23eaFx-b&7ALXBiGV&x1{KTJXoI{Da+w<j%4*0Ity(_SL+y;081&BMBh83Sk
zfgJ@_c0s%n?&NN2$Y0!GeP=eJ9yU_VwZ-8*kD|ifcVPluc#ey;XGb13`?mLr$`k~Q
zp1>i&`WKj^Ct6SD_M^$_`72fSc5EX1y~)zYfqF#LU>YA0A?G8>Hh}r>fK!?0?kzOf
z;V&d4lmx)iS1`$a164Ii9Z<-)Md)J7AY^|ALukDQ^pOQf_r+82QO1=${FO+=(OZWu
zTV`qA_g}60(e8!qb%hz}Nl{mg*FRAZ_|n4Tr6x#6;^vY3%|uY!tqMou3#q#oY1<|I
zr_=Xa>P@aGxCN66zwMz=-{bW02~=^}Y9NiIggvK}M>o5apn5r(w-}#~(_7$uQOQNx
zL!;Sjg=>bwppY=Hb-vdP+DRoqhm!2p>H<J?G13u9u?wfWPJy1PhK6texW6~we96;)
z3UJKwZMjq7i^xl!J37^%mfh@B`y9t8g#rJ5H-Rr1H<*}ty*DnderRp&oBZO1>ObZ`
z;8?wa%s2%en|#J)@*{1fX=ggy4F8fL<z+@M<NG%O7*s1lf`WQAlb$A@F2_sjRC{mD
zrGT`v8?k_eVF=_7>w~l7jU<Rdk)mlmtbBZYv*4a~c8#4q@AqiAl^NUt5LaPbtU-$9
zce2%$42&?l7wQYDIsM+-6@9Y00ALB+&FMD+8Vn`0yE>uYcESNL2J~{K-)8!9>E!f}
zK2J=HJv=<zhEn59$0X441%xxAFS2|^H#u#KsGbGJDUZJSJ#AGaSjZ6F;1iMeJ-Bvp
zp0t{c@WV`V#dhtdH`mp=aS>pze7s*D6cd9|y(Np6WSbJ6b2;<hP@IDWyZ?tg!XyJt
zPy}?wAn<jiaq(Yx$e-Yzv7HKRmTdHR${x&MW&uND;v5JoKS9y*-L}f(tJ?n|t+keW
zPyK&V)~wyGVPwb!nxSpLCjbGp1Fv{RU*CG$fn2pPkO+1$NV;=Mfe2j?ogM6*HA4NI
zOS`soldPVNa`tOmT9d&-UsCO!Z99oU7!PJla!i@w80@l1Z#~IogVVbU>l~u-s1MGx
z!5c*Dy7-_$qi)9UrRTNe!sFni6qcYx3Dd;_JAC2;@HVl)u<W&GAoKz!(L6IKSie9Q
z?y3UJD)i@eL5S|Q?#ul`V0ihoA9V7D5uYr<Z0pt6FJE#IGzz@aib?XKaL5+r%u{Lj
z_yov9%a&4p2W5RQm{e8ME4#ksx871DB_~HO_M}}*PEKC@L^BT*LR2f%hJ<{Ln~Fx@
z$z%@~Ak+gMm)f}no_X}(3}S<g<_6C%d`*4;`5*XD=_i6m5h@7m!joGLf2XZ+#RKAa
zMD&rX)p%IhJnHxJ7#;4~JO}@)_sIlR{n&UTmDk#xr)FGleY}9p>HRu;>4KpAuOSbA
z9%VCD)u*{}Dl@UAADHhv-B@Y1&9#`D5^BpU#`+kxGGgxblZm<-0OVv`R#ut*f6d=a
zY)bwue+$Z?699#4DrgK%00yY7F1=x9mdPV7K00<F89TI5Yn=Akxi^i`#~>|b@DliJ
zmG5vR6@H{21&Mdg70~);WM&3PT)Cnm3eI&bNEui}Z>uG8(4L)c1RhWMt`t9oS$ZV~
z`4f)P44B7FR>9E%wY44BM_WFq`m!t<ZIp+e6;c;bRTJ#@1m8JwxvDPLT+Yvt$gg_B
z=0Q?kGrGVqgh$0XqAVG=l_V@}#(v{x;8*9p-ii{wP9*ZiT&leAGmXJZKL%I!RUSMz
zzpkk{-*G!+)0r+;#Ss+Y<zP*46ZHJet!T^{RcxpTZ?Asy=BL-MU+;m;{JN)S^>#_a
z`jIBMuEFySp)D8B!OFm+!E1v!MZ(Scy2@OtfYps5w?3JR&FF6Ke*h{~AU8Iuf;RBX
z!z_P;3t*YRpdG^`H>Ibq&mI>OQ;D>KADdZ?(EwCM_W=SgR#R8!>h0-C%98X@?-$2^
zqz+7;!{wo(?euhppTJJ$0ebmJWsT+wC^c`F;n&umauJww|1~0%o%iSe)x+Y^9iqx&
zyBV2xvf`Sa8BqUGf;<pkk;(ngLSH4Rux(}pXFrWAv>~O(F#AVdPUDH)A9wQxX(s3>
znVAV(iioMa|2=zc#AHQv`4%7=d}9?4Z>Kq3Gvc8Zg|0ppqE(=`C-Zpk*YF<Z&uRyg
zkHE9UaU83>%6j!`H>7II1Jr!OF=&Wm8KS@!vdcFJlhpJ4-~>oQUkq^*7wsx&3Kw-e
z`U_A8#hRxSy^yuWE}TK7(h$e4gF8~}IAFnla@7)-*Y}&j3oaGfNc{4w&o;BOnODGR
zZ#qA#K|OB{IDCD8NZ)9@ky9SaATdz&Ydnhg>f74!ciK4zz*m=M#94Zcl@`R5E9WhY
zvuh(VAUKff-~8K{C~E(rm@4P5d#;}^`;IiyH9hGu2#tzT>dn2($nhhTI-W`Pgd4hl
z^;hfHKha3_N-!-fiI1^DROW+lp%j=Nxu|Dg5C!Hw*b1a&K-TzkaNxaz<^bLOZ;;5+
zt};1U*ohsU>!seMBfF8kJeygAaA8$~J4RnK#1_b0m5U>nw+|w6vQ#{FOFf3-3JcAV
zN(Y(>MFE<#Gu=sgW)}a^n|w`_2UCwXuz`~P5>1<frb+|38hTgE2=%_z>{1hcJ}mWM
z__0|o<!<5C&&Qa(5*qnmzb_4B#BW&Cc-hCjt*u>bHQIP}KQ<xr_p67QR~_#j+K`}M
zfcZia%R%!DwMu}hFnI*qU);B1AB?|3mSULfozm0dabV2)3?m>Qk&JAM69dC>qm5JT
z3Vtv%|1;IWonyQNQ3|XlAImjvCIZ>TKX}kQs>6#y28NwA*g`>nsE?D+i;Zz;sOx*%
zu@N_oUZEZg>dZ#q1wa2TCAK%s;xgZVf?HV!SP`nLD<9z~kQxD6$QQ&Bb|~==8loN3
zc|qKhhbs8{dfcAJuWg%y<7tdoYr2z@e0h!w_NQ!f+M;O=kF>S>(|{4sKGR7xrB*|Z
zq*wj4znLZly*5A&-e?hqsIrBAk82AzdLNcG-Qy7%u1I#<-^ceA*pgTx6*7#tOJ)$O
z73)JM9hDy}ko|FAiikYqW+OLGw)*xP<3-XbZcLSDgEAIVmcZtI3-;MrO>5UfLghCl
zcO+f_GXzcasnu8bNPM@co(QV&<-Nm$7$vRm88hihrE;MkKAdM){+0W_avMQ%bw(uK
zG&bT4@2+g_G|=i4nAcQ2A)N!-7<fqcIEuC1ugA*~z!khBesaQ5?JVq+0RDd3{VnK?
z`hHce_t79Na9XWegNpI+QiwY5i@UHA1q1}XyD3c><;nLQ`lqw#Pa_=ZMjX8$8PjP`
z6D!dhZq<;_(Xw8fkPr%_9#Io^WW>Yn%NN<Fs<|OI0M{v}CnI&1y8mGYr%NM6i=fk{
zhhFiY8hB}O*-&Kp3Im5O@v5hP(IP$Jop<j~XgPj70E(W4plR^W)zNC>v@B_XYir_-
zO%$pAndGF3N3u{pFX1}s!JpDq>Bqu-46@grngudkxgF;f(8ZjrqVSp~qP0~5lFPQQ
zc1UklAZhxDJa7Dy(hYC)1lLKwzc~g4V-q||E=l>gCjTqm+6mc5cKSIv<m7vb#m)F;
zX62;OO?NX53&NCm<AaUfyPFV(Bus_FjQdIy>4&>5Qn%WCTX)ybk%3jinS`&!6%O}p
z*hVK2<+-ZXbSUF3nWA4k+*MD67Y02dJG&uG<`(Og!u3xq&SpOr1R|8D;BUm4@IB0_
zqP)QYUQsd@{pw)$vL0d<Sg4?Hb#g%d`Tmoc^mf~8E}lr!-TfrEA?OML^KKEH7<nv9
z!q>|-zqJ)3#$hR|ioGkgg}L}{ldr_O^=Qv1aY^SXOBs@o<Uz8!rw+qOx4UMM@D(nz
zDPqRUr?#>wEPSm+_(Vq{rH~E)AT-l~caG+X&L6?ju<jR_6%tG^vSgP7LgM>qQhIzm
zhGNE8ieX~lJ$Oe%=_+0uy!|-hMNS!|0Hdt<ng)xn)F?vP_1Eu`t|aa>l$QQe(t*c7
zdAb*K9W{D^nKCZv?|(oKrxdL`2sM(7HjFf^<tA3FH$E-AaXMSV@dJBwZKyaiaBr1i
z)Ls(VtM_MpMo#dF8AccQdfKL^H=nvGDlv7mJ~_AFOTBmRD=DS$MfC^L9hMu!HL<Y0
z5~a9V{+;WEsft?`=jLb?<A7a8+?wbZ^EAP;L3_w1-A4Gmt$T<DHMD@Kdey^n-moNw
z4(eZxikedJtiFuzq9+n2|2o2HE0y57efT^;WVc-aMv>sd()u$|VjYu#OZrjbyngCl
z3sT!<3bklzn0_pMWLSU7kNm<LDx8#0NiXi(SM=dxO@vieCh83Vz0qfK;7W)9^#u#I
zpqLxCuc69X{tHZSjEVazmY0_`d$fBV+MhDHRCwd@=LKyoE{d6Xq3TcbxdVu59%_=D
zf+fWJ`FJ8}X9_`U7jpJZqO`CkP==w#e#&84y7!P5fjdFa&Ne%S!GABXvomEkp4_at
zYr>{e?~do;PM%kY1AF)PFk6TKN9bjgPqN#YTGJ^BDg}RrB;Cu}6H{@lwDF|qmU&Kf
zp^H^Yk=3{W#`QsLfbCSL7lBAe*xG`mFQz+{)&$}(Flt|M>y2Ia^;b+yOig_f6H{vt
zpM!pb+GLmq3Pc)j1}<-W;WllKT1A*~6V@4sHZLsth0@P6=b}PcsdXNaz8@w>&|?Fm
zyZ9$13lSC(8c^_R;$U$QasML=Pu%-cv7ivl88YRC@}CE&<-A&6A_aG==^SGrm=i_m
zVAwI>72%DAMlsRYA{tl=A)O;bpLgJJe;IvPfg6NM*%ZH>q}6*Y`GAXexk%+7UA+7D
zZI0*OwZY!zoQ83lb_tT@&XLQxroPw72lQ#Iy2KZAq#45-w55)zZ68keGmWXLKK{N&
z^KWk!arQD~b=w`83>o`bqa}45clP~;;@Eq0^yP#Q82b9Bx&HZ7ODzBSDgM5Kkr#a`
z@Uoqzp@ZgeVdP>Ct<|(p=Pl6C2z5Hz&H2b!t!}MH*PlxMxYar8+&S78Q_j;lO52%Y
zxPN2XlhNUdmBtsE@p=1cpU%<x_4sCovG1KUouf6qdyJMb*M}dkvviJLUz~rv9^2?I
zIR>v0;d^d=Td4E5N8n$FkynAY7k6Z1%I#vx4IB7u6{Ta`rdF8X3RYfB8blt4nL^$&
z$I26Bv@~%GD`Di%VLZwYZ^q?zO&8-D7BkA3PCjbq7(py=*K`xDHIlR*_d2i#Nh9T%
zj=H$x2P{G1>EpUc<NU-h^4TL`*URzvalNLa&7uXe)w|}5gd!)>lldi%51SUvamq+q
zi!vQaWd8J<#y9KW(-O^)FG?r7IifaYgQVyf+ffJNHU6l(rT)PJo>v&0e%+ZQwR`BE
zpYa1p|DFC2^hS*_ZjKvaDN=8Q)_x(4a5*hP0H=!nI!WE+*g&T;GA&utQo4WQjx2!-
zZEqd1ykrpVB&nN<du>Mg&V}@y=-#yzBntI+@TZ*A&IW#`5gpjMn|mp}5BW>u&yF97
zI9E;WWB2;+Iv|^f)qA8>0SUx_i-X02uAojPPw#mehmYfTy;X;cucHJ!g9Y|N8lJ9&
z^j7X%MsUPsMc_6_jK#)@;(kvJlQGy{j*EK?h;65lJbmBVRmmT{k}>7|&U!Sw4Oe@6
zmz||(tyqz9<h{pZpm+1b+uze%wUgfSMg`SKEIvaVF*oCOlFv5~vtQ{elMGgde>9}n
z5e|&n=|c}<t5uS9!fFb5&3<In`NhUOauO;a+M4mvQ_E!RKs=~BraTehz^uh-9qx2{
z9MxO-!v)pZhBRV=U&vi&!|aT~SDqyp&IxV-R3U$b$Zz9*zfOQC4;{;r?>g3q%Md>7
zPIWu0sL-`$4iZ4t@5P*A1~DN|1gw9j?|1ax%Xst<6?7i&W=4R-ls`puTymr*5@DY9
zQ3uc69I>^~_Y+%CGSrOwJ~tTu(}?YI5w6eHL)PK!mn@QNadKa0@xmF$XLNkK^Oy<A
z!aSf~JV|zpthJKd*^nS^W$PT}LbwpY&Xi2I^?|yigy#HGJ;eZQ(mtAKwAt`C+|8^T
zU3cN?O~fLG2zv%QJH$;k((Te$iFoWy@}M3WVH8TT{}y77f`*{3<nc`n9Osg8R;MhO
zD1xA?-#*f}8X-R?seQ()#%_QkNku&-vVyF7I>MctbXMQ81b&mK1ZI`iUtQmWS<2`-
zhihef55p&E{`W#UhHHa*_p`fZZTQ%kbIt!y00DLaXGU9mDxwebAjmEA6V3Q%nzS|P
zRX*gUK&K$85!ZrjvGMK8vNRZWNhyBE@cEu?${>pLoxX+^s^XPjEsN)ETaUJR7##eg
z-2&>z>HDKZtGD(MR~oB}Gk+=%(sw3Yk-oP6W^<JN>g!W8$)Q`wKE?rK&~><zy|*i3
z-9cg8{X<5`UlU;myHiy##K0(1Q&!NELLWuaZ*J@Tb3hIpqtjpb6*};vPs&RQYUm&T
z{Y0%Lvs#VVvE#8?mA&1i1l=lpIA-0SyKUESxb${OiCN92^d!OQO2H0C^1T=zp-$O{
zF%JYgdj&gx3v_PNSeejTsbs_}^jbZHXQ#2c0*4)cr(*iC7=NdyKxZ>fS+c;(U(y?t
zR;$8RJX1b**HV>DW>Qj*;THm(qw%{}rYvI^tz(EbeluaiDNhOSBbSPrkzAAxb(1A*
zP3}F_Pv7ZB%tEaQ0+9p!R-@iSRq>Y(OIwb>2wF;faUW%bnt9NBh$lW=c-7`_>TT4)
zGdI~_w=>otF%%DM=TQq}J5#)Z8-f=4A><@6Eeb2P1qwXNg~js&OHU<x>lpE8xZwmA
ze`$QX&@1EIxmUAyEemy$B(TR8l;V4ww!;$iDn{UH5IZupt``l#=^}J7|4P9j<E$sp
zi+E=W?76S$?vl6#_+z&grSIHF;#<qL%&sXl*{x&p(+A<l<vvj77N9}pV%B2DiRkQk
z)G7e3cN2o{5o4#3IC6RM<Q!>4n1>Dr8-2|KJspoRYJX1zybHA>2I_{yG^%U4Aokcx
z4^vBQY@Z{D5eZl;xbU4!F+xgYyeKO{mWQ@gj@AlfbwNppEC^a-9<)A7=X1W)fNBkg
zP=ExWNJqYjETX)F1gx>Ouq>={7H?ygNf@5`r@=rio`_q$CulV>9TA44TgHaUR1tRY
zHWD+Jp6oeq7ltX0#r(vL*L`FKl7!m|&@bMCVO2zEkzrj7_>0na|GCiA|K|exzlQ9y
ZK<NReBx6RiCkTA0UB9JVqG%EPzW~Cn+!+7>

literal 0
HcmV?d00001

diff --git a/ErrorAnalysis/sparsity_as_penalty.png b/ErrorAnalysis/sparsity_as_penalty.png
new file mode 100644
index 0000000000000000000000000000000000000000..6b9ce0ee53e2da5b554b6be8f121547213339868
GIT binary patch
literal 29067
zcmb5VWl)=4)Gmw_f(I!SC%C&i!QI{6o#I-86}RH<QnXlsLeUm?cP%b05d7phXWsd~
ze`iiInR{|ivRC%fYh8OKR$WyN6O9-R4h{}eL0(!D4h}vJ_96x#!|rUa2D-p5NM2wC
zZ2;^M1h9^Qy+?JIH}HakL&yE^1wXqH@(jBv=q;n~t>tFx?Q7v_1LtDl?e6U6?d)Jl
z>0{&R<>2N@$;AeHvQXN4d%Fv<v;Th|U~}`dV~;AFM~8!>gj0}~)b`6e%lGvo8|vxZ
z5|nwV8art=wjSFs|GlyN0RszJ*xL%gDuJtr7M`ofR=t0ixo_&3MgqpA<RJkA_yo)W
z9hUJV9b;|Ix0_Eh4u7AlbZ1jo44TWW-cLP=Je^&fosIjh1^IkW)-0K^=OLb0;lONz
zCr*$pC3>`Pnugs`Y52ciJLGY|>#UGuaLoMAHX8;I1d0tBbO1q=04c)DcX<grcNo!g
zJ)(pVU?(_+5P1#DtaJ!Gmk8WN1`Vb~xQv*CARWX|c60G7o9)~PCmaBXDiWxM2Ks{0
z#`<ExuxVt*saas4#}eTZW;^YNs*mz5pmPIm9ZN*;12QH&8~>tNhNdo74K0~8!kdG$
z+p%X|mz{t%(dYX`y}a{mOrvl5@stptq~_@14`_zwclh=s6=K(TuEo{}M;Qtt+bMVb
z4I>qPdB$7M0(4;fs9_<(nZ&zBypEx<sf{qCA8^mO49JFIE`8-D{c$|~PZ(9)&*$$J
zz47kRWjlUX^^Or!9*LYO^4_(7crwY<HYap1i4MH_WMKz2xJaX5YQJGrw^{Z^f(lW7
zhmyT}M*SuA!kGzA0k8CQB|`qL4dGz8bEPi{-iiIF{LcMcjd;W>obbEgrNS-hN6$3`
zd<4cmBMC%xOc6w=FWxZE_QwHRVRvFbf<}0yfX36vi-KakEU)nU@PHyz=m#j6-$QBJ
z#=Pm;*)aa;^_O4};&GpNypyx!d+y-shWoZ?j<x!ykZq5>*R}BAz6{YkuU;Hqbj9RF
z#I&wJ(_zs!x4i;>#7l(IE`PSrcdEo8j^X!V<F31|q2iNw<6#HGKE7LCOxy4U-+>NG
z4=h4<Gvcq<9hgvRcL3m>E!<yq)G&TEcm!zc&ZUKU3y?}m(SP=en?OI}5&DV&E&Uv2
ziUZa!PY*pEj`9t+>bu8$J95+`5l5-(3))sPy?Ec})mI1s{w+%{{6+=@Bf;|{xG6AB
z-Hj~!^n{|AN(OW2!K)$SR3Y^w^de@$g-X!grSy?*Yo^=hC5(it^dZlq`~X5hOglf0
zSdMgx>L1|Eaoh<{21J*Yf<$ouK{2@XBO3QF%(5bC-~4gGEL>+UlA@P$61XSXa>WIw
zR#m=-g?+ih)s+FC^#M(NF<rROP}${sIFd+UZF#y$;hXoo=o|MH|9s$IVbGuk<3Y4t
zmpo|DZyRqu@Fj5XQ5TUN4P;rK-dhoRe+Qz(xcv)vLjI}*Xwp{f92iS{gD01K;dvPn
zI0BhhUI*LwqTUP6Pc5j0`OT{hk3|K$7$-d1no6PCv((hv)B<-k8Etg2`3ldogFio}
zbfEjSj`{nRT<oEXZY4_EHZC{{uvZaYVD~^fNiqZq5WwB*c153orhh&EqKunN5>_RN
z*Ty};oOJ5nT)j4Xd*<;?rE^Dg3GSBN_l_+Kh{s2EkL=^uhDZPTt%kxT3R}oM)L$%V
z+jaeQu45`TSfKa3!0>y=k*BL5I%-f$+!J!qy3-a?p2SNEy)RxH$Ku}cj#_uLT?a`<
zuKcwpx)iM+t=~a&yw`@`fqOXIJjMNKaEDn#Defx<JHNP)C*w@d#u|CQi6!(a;%@i)
zo`ztnTF?67hY*SjT-nrX*PiuTfB3hv-FuCJ;O0yt-%HJJ9&X=5Q1UmEObb?~x&kRQ
z1hdp8k9vC5<6JQp#81Km!7=+{(3iOM<|Y?8MSnP2ge3q-Im)P3`(PRXdWHZ~s>H`b
z5%D5{ZLa+<y&<a$%$lPC+O9{sAnCBB;;t~N?FiFJUnNE(cnFXHBn<&l5r2H)GcVa`
zedi9R1OaLsS=goFL>mBbTnC$oGC0fv>UVAtvB^RQT%3_Dy9;)dDKTkJ-kBgK%c6O*
z0YH}F%I06wxwe?=gtR&J^E}pb)ymVKdY)G`IwL)L25pe*;l)xlFK&gl;GeM-z3YXR
zoc{C+G1^q?Ez|ZHnzsQ<zGCg`&I|ul14(<YePU``MKqpK=?Fb*?p@JuH}hKSLSjNW
zzZJVU91rwk6G;l7xV%COg;z8;{Ug^QCKo63=0}=^v5yM6LkGPU0;x(-dPf4?(cvxO
zAiKHX7?$}l)5y``xBe@N8I=!$FW+h#M6e-<%$P=a;pKfwnu=;}^yr`qAUG)Md%ffQ
z#~y3a#IQTap}2aiay8Jh61Ynbj`{cF0|P{#4YC}In@>!g_;u66m~yl{oz-OBG5%v&
zlPdS(k<t7DnN|F4lWQW``EF%Gx9jubw1u78VA09&ByGJ{d8OO1@R_%^YX$JOyC<{U
zTe~iB?lz}Oj06HK2FGlnf)v#STNSCt-~Zb)Nv)B07Cw=yO%T@D8ge=!xrmgAlMzqW
zd?nN2{3w1x`-5<q6#~`p-FyP>TUC8-@2Sc>M(^Vq!2BL+YJykp)mq!&ENj!gW_lxx
z5or47TpBbu!C=84nPJi(VY1|l!G69(TOLGw8-35JeQ?(vCIyaZSrDXzWT89r_)x&t
z^X_(ZIguVos!dI<M?9?<GQ^5SZBTqi*ZSvPM{m@%DhTw*XATzJf-q5;EDm^n<Ujg%
zkh4^>xj-0Z6z~3}_+;WS*HsKf85eAg26|4o3aq^+@%Db_E1shHrPNU6d7<j+h46|R
zH28LU<GZr4buC?lb31}i;~7|+euL$v29CLCo<+3LtDKv}E#L{L76U<Iq+T%3Q#F0=
z@0T)ot4OC?H#>nK>2?`1S)9?!@GW!@mHH5sxZHtjK*?8uU9`(nZlQ?VOycivxuk1J
z9Bah9$|#!xalKv&?p_JE`>u)QzSnbROzNTQKjLdE-H?Sm=U1vA&&lb{b%odPln{X2
z`=%Ft#Ruz5EAewFV2@}^FXCI=<MnFPXj8BIWR$77_vEe!=jhNt_eR;tUUKB)9>%HX
zXfQa&yy351(Wutet)j$+w?7>?=7TmfhS|!2N-2)4+R7Or#?vcFhJ5$5T+8a~{_5L0
z1Q=db(X!cwLUgg&wp4_hzuEliIxn~S+U}NKE50d5GBvDVUeN9`3?wl-lglb3*%7nG
zKmG^?%=k2{o^%GVK5~rS-y_sU0u@XxR@7Nz6*Uf^FT+(vfrR=@5c>vfT(Ew)TTu>M
z@79#PE{Qmui^WK(q0>2MNR-3@oJ6a$5aQmGpx)|cdHvQdu6AUATi$Ip(JiQ<wEjTs
zQT>u1e_Al^?+7wJD(DrJR3c-*>{9@g!e4Kkh^Hv$rYFqN<R5_P=^2t)7>Xc{2d<N{
z@!iv)@Q0V}iNZd+vBkd9nWuQ^3Pbnn`r53fm`x9X0v1GWj7Rm~VjV4?*g=E2Rn0qH
z$Iz<PtT0E_XXKjoE}RaG+astkyGNZ|tK)+_;F@3i?}8Cg7Db78$!D}zR*2ubTNZNZ
zjHM}|Lb&pDa?s#QRofE^1n8n-ho`P$rw8AuIm!i+7Gv5G39lI$P0<Wlm73lH^TsUG
zLZH+qf*XkO$hu05`A1f6*g+H>xKMS#&W5)STaAoSXrSW}Tp<8dAo*e+^j^o~RX-Pn
z@n8fNp$JK6AUZ_1(nsld+4p<oWu*+wYVwS*@TEX_vv{V=leq2bKv@v4>WZS<Ji0%~
z7ENLzH${GKX1@)Im^9}fA+ATS(LC=}CyR7cM}70yt_+(P+uHE<9(`ih?(8Ac`JFLC
ztBhVVC0W07^r0pcZ1kbpG{mgv$+qCgG1E6oSNkoBOFOPWbp%t~3FE%?$gh`NGT7Tk
zo9c>M8%!Ne8&$}#?b~Oe-7+GpEuJ#Mk+XD%JMy(^u=w3=`<-|nK6PT(lY2<}{k*^(
z@4$ubz>i!(rOIyCN%6f9l8elu!Eaw%b{VzDXfJISGmAYjd>%I$FA?Xl6}fA)HhDLe
zX|5d&R}aMY@2)#l!MC(koM%rM9e<54T=+vW-EAwob+s$ITyq^tUuS(kEUiOETSc+Q
zZ*TsV;aou3jw*bD<<#Hru@~oz@)ZlUn$B$W6z5hfh>Etbg(Q-U&=rie^XMxX8M!7T
z0m17D0S=i8jBld94*!vqHa~te?@afcGhZtu^8YX-nj8KE!%{@nUO`d7U4S}!c^?0A
z+rM`vcEvC!{yY>FL{uxwt&Ia_kzRPZ)$JCtp8iOXW6H^N*dV2IVG@3lFY<3ppEm~-
z1+>JfvHvGrMRlBsvQ+ZpKYUJTss2^<L_;*~jickxo@d}oL-FvaP!#cUOQr3Z6c$Vd
ztYgSACE^r}`}4;>J10kI+4jE{qS12eM{tJbsA=wD(uXE_6&0Jy&7PjX`Tv>;VOTO7
zMiEBbAXY4eeY>Y*2>kza<+6M<_)muX(4NQK>bkO%74_XP@|jA)axSrhi{s$tvV0M1
z`mr9{eKn>b3lDL^Ap)f+xuH?c8lGQQlPfQ7Nb6P+QgQX)>&3&0mMF49K8?6Y+0q#d
z8N=LM#;M;I^3XNhC-T9f*6P?6%thxm{VQxN5TyVl3`hdPNs*>4|L`=rv9){$yUQ`S
zc(Jv6boBRh!SX*<1P`8jrUaT($hEue{M%IX5G2b_L{Ezi1Li7jM@RuMFlnj8ioGn|
zVk9Np0k0s?xuyB_-%6{K+u~>fbXdnFh_0!qs7ijcoH${9zMj}qTp(e@pp|Jl)M3zq
ziiYk+i0CA-oveEG6!E`5ejJrEYnkY>HQsb?RK?2t)AH8J_|TY+{d?Zb9Q#k_&W=>I
zLesB6OTjB1bL3a5@@JdOy;6-iv|+e~J~GWwaKm14l>+#cu{>xwv&|7^8?Rup5%HDD
zrt@4zL4Q&RrOl}K;krAsL(9<~1wPL*9Tu?|9y$m@#9O+`RRmn7hAdN-i<}&sFZIP~
zj`pI0z96U-+om|~RrcwctyIAjqAJH+d4GQR=Wb#@<Og=rnu@X_Q|5*T`!PD(00EIG
zY(><d?3OG{Yb8cCL;z?Jz821{DGMWLY<Ux-d%;Hnz=<C7ZWEC!$i7mxwDVUoIrcj_
zY%k{#Th+724{}P}pcIX9!)qBjR%7t^AI=Du-Q<Bx%M<{<-#H<I*LSEO+<FXC&3E!f
zR8UD6@iu>z@$h?58A^yBoF5z|Ev-!-#*#e`b=v1=V;$`4YhB`6rfYNz8kb3g|8!XP
zTZ=P${J%AaGA(CJ(!%QTLd21uO#vSKjhGAw#(fcey=Cd|?3@fJ%Yz8~2q>wkrPS!^
zXY417iod7UCAE7vKiM+fcyeS<ludS|5BaW-!OYn7h=S1;JAh#JSq7AR)>?>!9~hXd
zNr1=?2LOS?NXpYcf@A#qs6c}e5`b-bh<&<d$Wrv3BTo*_r_%E5v@Y?T|CC7~2B(QD
z9zvyb`ND*E#7f1$<J_o1>I2nexr1{6$8c7W4mg@8w4;EedDK~T+J`TT4P`;)-5aoO
zRw9Z3EkV|cZ=H?MA4Pl*wp!lm6C;}(^G?(Cc$Wun8UY)KO3VYc+#*z&r7WEdG&s;l
zr#-iFRF*CW0gA)lDKhfIDTP%+fVessx5*7>upPh4oKrady@yXO9ACPi>aH&!xr5{A
z!V(VRgD7CHi)6_&GKzluWVP0w-0DTbdixP+8Jyj`uSmyk2o5rQj5(+AEymGIj4yeO
zkH_frz1;lCC&jJoAxN5@H(s*+#{w;hykvjhgEu__n5Aqh;<`k1lr?UPAT<C$L%*b<
za_Ps#Cs1t!alrGfC4Uvk(A@pjZtmu&8L`OAYvJZvQe5*TXV=kj%*mmuzO=I*Ud{{8
zHjc<C?0qkscwM;ebHwvC_6;@VGDWY1_&5PNUCX<cmH6M5Kdt#{gX0WqgRRyqhn?HJ
zd)@M!?!-piovItCosRfmfd^Jmz_G2(@Mt;YaF{uW&-Q1ujr-W>cG@TjXi`&Laf+LZ
zt3@x7wc7Unrs>(QMB1FR=OcvEFRgs?!PfXArb1d}O1jv)w{3G+`r=tyoHf>y(lTM4
z7@oE6;9XkK)X|pka=~<6%I>Fv#P&^3tAck~x$@Vg1~{^(RP@)`Dv7_<cUA{~MQ(ID
z`S7d0Qvo#`1o#TegqWeTbARD{PY|A)pzq9YvHSN@mPzt?mO8IHHo{QcBmR9@bBViD
zC=f{)*Wu@~m_&Gv_{1)sN5~9In1t_CyYhGO4Dd-srFWX7((^>ZN6x_jywc(Lz0`xH
z6dnhr*yA)*0G8n1b03fdX5y06)GpK>L`K@L6Do?zj!u{s8kVzcT&=D1>G*TTMqa}b
z-f#fPBGzwOuCxp+q)BV#xc=;t_DWEb#Ko3Xo2JJd3etF9N<a%O@CrqX#a0~Mww<U<
z91yDf1rA)=9}|;ABgB}aQ9U!55C@_WX?%KGJ*oIn6B(r_e5=DcuUGZaM27n|V?w|v
zKdjP39^sP;lAJy&Y6~vDEr?-UF?m9{XaX$JNOXL??a}4lwc)qUCc;KY-cHiK7CB<m
z(YcYusyjS6O2ZQ{Z_p4}Mp-^+;X60G-M9Itto)~>QbgJp*;XvH+r8OZxu<z#R)QRy
z*nv&(^|h5EX(D;Wzj;&<SN?u$DxWhy+pqdEv-{OFs(D;RQUU<bsvK#8vb<2O86$1t
zmoJl@8LmhbG*1E(t*u#KVQv?3jg3YJt1R0wF?T7-YwOPu3#+(5X{VOh3d5>~)cN$~
zY8J<m@=f@tdZg$FPDf*aMl490zWSq|G0@g)>(rv|)wTo|9HS_pWnQi=nEc2Gs&>{`
z%V3??{ig2M{XS`A#p6;L!Kh5UtxBT5B%(<M1(%pi!q1zsSR)*1wT`;tRZ=uCGiAG-
z_7%&JIDeTWkB48NkzXj@N)cbA{-PEGCIEM~KbVc+`y`l~%KaOU);t?lG=p${!pQls
zH6NZZTf)AA)_;x!iA}pgCl%a#l4o?N_f^+fmbcNM)`?8ee$T6^H5)%t`opDVNZK0A
zp%MF2ntmll5rdA26C#m&c_bk~Lf#%doTGbEdlr@K9itGOVS<`VND#_htN{;^MX`*#
z8acBYb|%OgM@SojtT^{u<7BbYDIdBn+KIaMJ6~fdQ7V^A?Us3_v+0N|ZTDT=E^W~v
zkXaTjlKW!EhK6PL0hz=3dJ|hG6eVH|eLb<8EU!<^OtR`*rsM5lMW10*XcdGdSP82x
zbS;q`*Lc5-{i*+pO#uts#juo_<Iw|eEv;E)9S!P?C<fSuW@o3beaUfm)U+)DrIj*x
z`S$w+mWZ7BQm#8-3$9#10u~LA5Rgtb&!hWmOs$FpG1K|HPTREl0$9O^)io0(NvSPv
zH;noZFpKS!&m)CgK`8<+u(U-^xDNjC4zfW&)K`UX)CGqWrH|V9fMflansQLFXyWsb
z5RB1<QLz~4uylcML*~$s%r+&MkWLQESsr`zTt{*IX*~YKsCct-%1OqV11cUqtncJ%
z8GqFjfA2tD`C`<V6Qc;A`xx+zNmda9#KZ^*+fJE7`{OKQyeXeFxc8-FLs4YiHEGq?
z|Gd3Hv}0qmca<-(vwQN|FmRoGoo&U#G?TZlYF-_o>*=)J02M&=J@%~=hTphp9BRH6
z!xA)F5?RUiFN@K?suAfh58s`m<GLR<Qpn*+fTH3xJw9N!bs~OBPpv7Tqs1DjVGuKj
zUOV_{jWd{pel%OFwR%d}FZ<4dD<S^o>6J<up+&*G4XbB;P97W=X{+ubn6FLvUOgpK
zN+yIY<DpY~|6tl!54}oP<Qi`_J9LgXl}?Q|<arRCYwIeqq`E$%-)do>qPAjNUnNj5
z80L6dg!HK*f~k;i?sYFLnTz(1aRlfS?<5r!v|JK!BfIl_G^*IxcverCEn*Z^EzZib
z2g}O19LEKAht&ox$pmGX*`jk(&xB~P<Z7##9FZttM!6~bbw^8MX}$l2hZ+Tz7~n?^
z+|_ON37GzRRsGWHpPp6Ux)>pNFE##0d)Q_iBt)B$HDeVMqa<)NX)i^_NV_nkvQP09
z_7i!B=$$--g+G5eG!akSS4fejkEHZ&O0@;RP`KA7ETrnHOSsrGZ`e8`+sJ<sh=-P>
zX?@7#%=~XTqI^Z=(GLjVNmB>Gy#Hd)T{%|j=Zs@cLP>cH)VzZ2hRN`T!l1v3Xa(jx
z|4=JSGfw&uU^ddq&Qyv7VcZQz`G^;Dmd2<m(7N1-lxU@MKt_hJS2$CU(K5B(v%V+Q
z`G~C(DLbRtn6a;bL!;)(Y)DM>^&1Z%J*-^VO{?pyn6^*rUK?u}Lx>f~SzccUX)06s
z?0$^0mX+b=r>>rJ5K*VJm6W&TNog3(q#6Ll+2T9RNR@8N<SkQOzS}EsTTWXRJ5)A(
z|BPMuM7<K|)7ll8@R?S~1_SSq&7LsoY8e{mYJYJUfD&o2aNZexC{$|C$QHwhj<*{3
z<r(20eK}F~AAX~V^wfb|ar0B9(4lj0uFDGE_yWGPKj|}s=kf)r|JlwEt;LZ+Kv%^k
z9HtTMHgCsP>$rItrJOiKRsur7j|b)5Z)cak#s3K^q*Zt>=#h6a*x~=}5KTYgRnO8<
zvCze&tvtQzprLD_banpVrJF!&<4H5~n{R_imHQ72;W)AFxgS_y>5x<P;r1=r22E6Y
zI5u_2r;uY8x&%a@JH15#>FT>LB`eIDo=X@_9cz6V#%qeN{4izc9o<)TLX-aN11ro5
zlr;m8Q1?F8(oSs8ZQF0lFW_M5knXA<fUxw)D@w`{;NpJw+r(x*tiwtXAxKB&UH9Ag
zC4-np{CswczR#N!;ZQdm=7JAeVs)O>%yrHk-PdByaOGd|w2Y#ugRwhEQSo`?yE!}2
zbLacg6R23a<jzxq`|}6iDAX`jY*e2~D`eGd4FB=WQqNs;KfUHJSbE^>_;fBm-Q@<|
zB(>_lAVT}4lDJ@ahuStVtR99d@W~q-*bQrH?cph>ZU2)}_79LcOASak39+O|7+#WR
z{O$JZ$UG7^Y9J$8P&XK(l5<MVT7qV-w6eu=9IZk|%}Vhfe*g0T@{lfUOQ<%2m40v8
zTN(v{pHaOC8vkuJ;F5+MHck%^+12Wmd+YLML?%!!0B2$yc9e}$rD5tyLH$XsOUWyh
zJNjkxZXKK}FfTm+3pxCY1f879;hjP|H){a#TuCJkAt}H0rVc9sHEHI+&wBo)roa~x
zq*buN!=HPFT<*}u31Z;7EA~MrS;lPnf2I~@Dz`Hejw<^nFI&Dk>2SxNU`uK5!{_zw
z#Gc-R!IcTQk7Ya_n_{YYW-N=GJHL8Hi-?4eAkN_r-EXNSE|p$Jm{n9lgK|!G!4)h&
zQips)V6|w?Jon?KcTM`FX8ul|4?iGA70qH;Q-_hPfw`QQ@I&UvQ1z<Td5L?~4RED(
z#V<awE*2E4oRmG8qu{i9O7y92z-d?(wg+J4#$@70_U5;q_9ht_uf6*a<&$xP2$w~F
z4YLKym<Y$#c|M457EEKag8&4u?BuU+IX{PvJuH1!96VaRP4k9VH=4E<gKqV2ISq|#
zR9VKw<6%26$Z6JI;FeYaF>yF1H`Kh@H+`_!CwtDjFMKgOVIIx$zeOY1@L6ii@%rAm
zDLE5MTx$6}>ak7nSY14oPBvMD@l%=i2GND($VKzqnd3!XOyR(+4#w($XY2M&$D?y}
z;qN2`jkFHV^WnQih2L%aAgw8mWS9^Ttbbp5ob@8zd=|sGMqPj0XNMJzkBt*28H)sj
zLs0_wWDUhNRj6>iaNMYPR9Qc0V#^e8q=!!xkK>3KX$=+(oEew<zx1<`eid3h@_P3P
zP6;mjOCR?a4aw3;_tO*pU$|v$U&E2IdJ+v5nu?8KQjJOV1p9w)J~2|f9$@n<ET(qe
z$R2KV+x}AJJ@M{foT%3ljNaqb-d~_D&(Si(>?c&(9R$dhFLNBjWajAlGIuHYw6wZ2
z8=<wSFB(Tla8TPKo8?~fQXx>S;@#gN_2fdt`$&sId63~)2?nwbABDsMUe!pqIuo+e
zwRJ^bkv#Thk=N=}J50z&y-wHSG8DbyEqIhaEprx+KZ2PQ@Tg-*NGguh7u8)FY>jsK
z+VGt%?5<S}jaiWl5e$+W!=lqDY&CXEa5P@UNoOoMF;X;BVf|HZ;Tzu9iHY&v10UOl
z@2D*{SIqvR<O(_#)b9)y{?npB7nWYFV-tRwv(|vUay(^7&~h?G@xt7?@_<~fM@9zd
z`2{CLSNZi7ATDmDu|^ka)%&7P*!!h8I6opbJ$3G5rOvhHPXa7$QVA-e_dK67_H>(R
z{86(#vZ1*s^pz~-gC<%LEma@vG;k(&cU9xM>ai?Zsh;ZqwS`T51mfb5h0nkB_gXi6
z>PF7JKK}hXuz$H0xIfnpJ8mQOBj!L1P0@U99=o3D^OC?&$6N=Mv*3frkzN511lR2&
z&C#VGhg0`rSdSh0cJL<9<HipIKkm1By^`KHe<WMv6ctn)yq<u>u&iqDqWd0#;~}Y>
zLn3DxfE0^I1ptr-ah_rx`^<F*@_%&uTKO7*ojft|f<15TNQj$eMrd(;KVU67r}A)n
z@7ZqIw!#q|UD%Z6+-9LOzWYyL#jLH6^_|hOVMoTNC<M6w(u))KkKxpP+A_Hcvt*}K
zSN{5&8!UJRCNU{s*~aEEsg^s(A_S=p6&0zhlG=o=Y%bPYV1D&jde!KfhsVdqY3<Gs
z8y|kIlKb%E7G28!p;w@YjTj6_cK{HdJY$bjMM#|Mdi?*)0$_GClt1SJEg7%yuV{;i
zI<yr1H32DbXLw-eRL#Z5(aqw-^i(Md7t2$nsU43lgXeN~uVY?j6dQu?kE37iENL$}
zzc{DB$LAAC?Mm~;%epU5*YO`GE}l7`EH+eLocp?Ge6d7B1^vrm2mWw;|C&ZeosVVh
zRQot>WOOY+`b#%@)tA9n&53z-=j`gp+3R$&p;VOR*nQi<v0qDT?zc)?+pb5=m3vnp
z-=_00DZ%2`<bQw2aT0%D_9ukvTvpl1?O?UxyIR05#Ce#|?B^^z@#wC~^@-iGp+V#k
zEWd8@Xhglt!QM2=^o;OYuTy$2X(X5ipGT7D_nXJkIcVs<p+gvXyd@yYil`f?2~Fo7
z0)6g(z2E1kmh27UzF%<*3>e51j9ZatOTXa>16q<bqFoWh{qAdzKcDC`g3}zub0IHF
z9|FgCYG3S?;K!{tYl`{Z`NB9A`I~(QmZwo_=|NiKMriJdp^lfX6zK``LZPma*J4>L
z4vlI&C5x?JLeqXtO-aa}?8%~AU&uZnYXXVgSmG>HMD^Efc@{!<?h)2SH~H*A|HgD!
zR|SFZ*QWV}kIsRtlO<GVa*5mZUv<E9h*S&!uMS*1B?_5g>y}%8>)lU}2yOT^yX7x7
zPaX<{Dex)Af{%&>^z62#&)p%u%3l0@#IbMLGSZW~mh0~`^3^!98{>&1c|qZQN^GEc
zV3-eQOwtIxw?$44I;f99cNbx3g(8TNAXXxLDFnn(8CQtdmrzwwa|)jeq*7EgSU8jf
zaFSdhsy<9Ff?`MZ4qJS;EJmEzExEE`C}Kd_C?I1h8mFCKkWtKFZ4;-yLYmj^7P~n)
znP4)WIaMJ~KqR*%z|hFy`49EUrlHziBH6YN9)~|y)7BGPF|)3DY$CZcUYCqMi#`=q
zqjcVypJ~CDF9k#86}7+cYtJ78lABSakn~w%+Fa65A?lamz>dhl1CO1-NTq-*xU$>{
z{fQ8$fwTTZn1gT(89vF;x5#ifkg}<($-VGy3LD{MDz3=wZT>`yVH3@um5ThIU+-yX
zd;nnQI>kKRqj>hAk}mDCQxfQht3c4;Mju}hz<vr34YV7c8P;XJhBUp21Gt8}f|F2G
z9PQH=m9Ao9F`p|esMwb#uwtLsAAKV4CpcJx)YVj_h>~~-ycoRG{4_Kr-4Au2JsM6)
zC+Bpge}w@%)~9=|_7KtAOPBt+=`dQpFI9n;Am;<c=ea0d^yctE{0}jV96+a_pu(vX
zSN@B~0FkJUj&7tOEwd!=PRRfX#XMJfncGPGMMCv?b@|${L?XN<$tD_P+GHT9S`4jz
zY*M--xi8~SYE1qlrbLG=x4(#fA{!UAZHu;_Y)w{8d8}3B`%;s`XoVh2veOR0drD0V
zNU1${X<?Rb*qWo3+sJSrX@Gladh_Hm_B%cV@pR3L5|Xm?DTFBmYisL&SIj)!?p?-b
zD_7V)FIKFJeU$b7(6usl<J~!N=x9Iko%8s?KfCw(h~wkNU%)5d>@7zimTeeY*i$LF
zN*hs_^DcfQb`~HihL~xaF@RBPYLTE9&{i}=+ZWJca9|$rYbc#Bqq)_bITxM3rOTRs
zQh=UMoFoo6)5HJffJNRoY{CtiC|Pk#ZuWVIoKgkAiJW1jk6CwpM+u2Ru1PQ+xL0Q_
z1%jdQZ_+v;ZyV8kSd62pb}h%*mDRt-Ec&};j6J6GU?kwZLD2hmm}eVVW5-j>SLhsR
z9x6=S_44EdU%v$On;0p*bX{uRF9sN5k-~uh1^h`_a^%B42N_wP*e3;to?tC0vK?Xu
zYle2KwuViErc=Xt$uL#3QwzL&Q@Oj*qYI0IY5%wecT-N(Wnk$sSz&Bs`YbKP@53_0
zQRpcz{U!!>DBfqvcz|q<dX)|YmwYZJ=Thx`*MSkk^|=b};)`a;1#=)uZogHu{|o&V
zJp)T#M$${zw{d^5xLT^-aF~bv5>$^hD~cR{U#)B=6eI%{BIR*ilihf{<#Ap?Q>A}(
z*dw}yT0u+$Sr?bX-E6px|HQ#*w`sSzwX1yJOEAca#fYI{;`rRLEl^M5OQw{X$wB8m
z-dNi*n<oyw(@x<X|Mlxva^U?1nKSn!`tkMEC^mU{b^VvFklR26FgOTT&EHfsknb=x
zuo3r-5*?;G+s6Y1C<>-{O0uS<xS#rhl=Cy;#do1`4GoA%Age{K?yk7QY>dh;WJ9<T
zgwhx^_0vCLe^gy(!e<~4(H6J^?E;!!J`mtjSvpbA!<>myG@OBOyM~WY?g4hl7(G~{
zKyRwR*YlUCc4TOB<jPWl#pA5?Gh+1Co-aOu#@ik8f2lPkH}2|w#AoO|<g1~=)u(sV
zHSOQz0)Ev`*s2|q-({Sab~Hirkj#yt9jdWE2;fvgKM0yFats}~H(G7P4VER^+?0%=
z@SHX01;G3mbm{*7^(Vn$9qHJ=v9v1^TdEyb`yz`uy8p6QOG+Td=s3;E>r<o2$M?2t
zzp9ioG(BtX@B>Hh8Y{iA1C{PI=L`|6etT(3X$9hkRrN9SzYMg(*#`|@De}rv{@36=
ze)e<?*gi#E+;8BiOccG`PYoRe#_CvQ|FHIpg;cg?9GY}#iw;IpfMAtWNrm<>cZ>4h
z>gkn|BB?XpQ$l)b-gnZw^a~5$W7oSc=jE%Wm=ZzmB5|n%DMXnHw#Ia^pn<ml-htem
zw19XCLt+x>zruzTAuoc`%BeG7KUlxA{8tt0L9P}R(8hHiXO-PX<M0b>`KbQukcN5~
zwK#>HBz)pCLf*rJ02-QmMh3h&7B>C!FbV3@E)zn93d!OvP*d^d<Zn7h`h|_!3OSRJ
zHum0fkv;(p%O4u7fd@lg>ZIcA&&D)CkB35}6RgHQPoghqmHXOcFuzfE|CSR5Wd2)E
zF)}|C8^MM<yZ2MabQ6T^50iG|aY(q$z#ve1|5cEVxOX4_)6wKmPO5TW*>4Doaac!~
z)dx%(O-0zu<+925t{(mB?sC$wtiBJnBNMhh>&{$zTyke;jyWk21aXojZFT8Wn`^()
zY4w0<sR5=I_;yRpNBN|%&K~g1Alr99pu*J0LZ*MueVc_v`;&Q0SWA)BhJ&?A+&d>Q
zLdfsm5Y@scGf%V-#^3sBT31S{-_5OVplFP=kqMD!j2m;N-?TUD20=m`IpfR9TzlNV
z<0q`W|Jbu)<yb_*#9NN6_QDvx?9j3EqafGo-^4z>X-YF5w77rWNT=q<aGM^VD&(5G
zihlwlf=D0U<$I#k&(5mu0b+|NpHtJWDTJevhvG0f<%ij6-#G<6$2fjPQlHm{ajJoe
z_v*9S2okWi7zU%q6LVE$jiWBoiiqyw>)3s>)Ki1=_6nWtE->3I<IbM^)L`ItxrH;j
zWUmz|>al6N;##?r1*dkaFBZ~L7r(k>I+BuE>5202(BUMEedm<;xu0DyyJ$RqvNIyx
z8WzLULK-X%EEX^``(#$39mBF69Mv=Rub8pzg6ew?VOKt@f#JkIPeq;3X-kjr6wT(_
z@*`N9rT02W2o|dR<A>R`^}85q%_><O!qP36@H-9{S(^qfkCt|S!=Dfab99W;VfJ0n
z^PME4p|!&56o?wXlE)rO7z)yTH3*z6ZfpXEalCPGS#dwi?z3~k1n%{Z9NX6B;3N>l
zp)22Qn!xzYozLvzF=pmdHvcpgKPN6V+F8}(#&U=gY^DyUN22N@>(fXaFx*`HAn{ef
ztUg`D6$pL|8{tf^Zd!70KBS>{Qfq5yacXw(sm{J}4&mdn<n9QbJ+~gVfkjlskffJJ
z@z5^9E{xfD9YvR>qv3Qp*4cPW(bUW;|D3DXd<ww&Yc=!LLD@7bZ0ICc2-VJC@WFQ@
zp{x0Gdhe@^G<xKQ&5`y7BQ1cJtbckD@?N_h#43`Yv!|CrkTN`9RjnM873L4LrJc8r
zLNjDxql^|?mxdh|)slxIc=5mQc{ftC^5TO93tIrz{ZaD*Ue-6tO*<<1?V388w}L>A
zFPUjKnc{c?EpIQPQ3$R{x&6cas-OPb*aPN+UwpO3^TcaBCdt?{<e@CGGKHY{3oK$x
zwu)xFCF6$Pm9%zd=eu<)&X!fj=kh+q@6q3<U%#3q0daSxcGu`Q96}ImYu(}mjTaX7
zx4f`nkW#bY1y3^5^kfbiBx9p=Kvd!m%YHuXIj=gD@@=$fusz*yj;%$4hQ5?|q37(V
zXwl|vB9Ie~>z~h6ebYClymN-4zz+6UUME8fu9qC$Jeyx`@#2YH_M%2?AB<_>jCpxs
zlGqbJfl~|pql(6r3rAMWa`Gpvmu!7;BhOaP?m%1;yap<9@_QAi{G1?51P2@k*ap`w
zI}2db3E^{C@4B|<Z3S*|(#f?iuDM|Yy-370%q#8JtaOvT@i5kYQsDLYaSp~u8Q=dJ
zN2kKSST(%4eBnyWBTX%Qp#JIArJ5iH)n2Pzfh8HO4X}|CO_+od<zD}AlYoOq;I)RK
zAF)QbMudH<EO(zgs!eo;K;9;Xzwl2Rl(hG$b_25%{mbRa+fTbzFperL$t;lQ*rVl7
zoA8u?ZjRQ-&biEZhe&o7{#H`KNqqzT+t~fiuSvS&w^xa)=LfN*mIir7L2dt-Rs*M%
z^e)uOkywQ+7`WhIbi`#IX|M)&jIz?Kq<TBiO#CYQq5qyW|55&HE>n7-ve5W<lwlLB
zQo^uax5J)eR8|793M%$!Y9n#$Mc!Hf$@`__tdVnz)7lYKtiN`5qnu*xLmSf)ufg|L
z;vS#M-d@N+aRd({lRwOTSNz%UMHg+q9@sBveERxxoo9!xo+OYAre`F51mrd8gkj%r
zeBjLyvd-wwEC=MIh*p_>%VQZ55IT&C3`3Tni8j505pjkXLH_lC;U+1g&s8k;)(?nU
z!D0nzT}`o{o+$c4{xK-@1`@BO(uyTCu;cR*T(4d)`TgC`oo`*_WOF7J&-#n_A3*uJ
z7+1Pict|z47qvT;kT+n<u#8Dgua98<FDT2u3pZLr%RH=t^#kCWJ~Vkfq7XJyAs%<x
zk=d6#DWjag>m#<|o-?CW`XNvuUhVvfhgah&qhZ?f4>0!a#mHGH^O5IA%PN&<kmfV$
zY4c(ejG>{kuyh#JbXDq2h+oFou-4(`s-D#7cX#C8cSh{ugs852XWbW#ik6Kdo=#85
zI5l12kSFE3u#3ytE3<HCn)wc2pEndr2he1GE!dtznuReXKlOTL$Bqiqpt)vv0Xp~j
z@WCoQr3JSur~c<qr~QQ^93tTFm$}QMLsWh|Leix`IARqNO|TNCKH|a_RQ>s<eYH->
z^q0V@-#Qn?u^h*Sv{+V|67E|gQ6$c=O~=5F%3((x1H5LTq;U(Y$NCpP6;(rZf3CA9
z(((vR+wu7s8Z!7@fpYH8sdw~xsk|RN3x^i)MrxB<E}%ku1)K75wUODJ+z+cI4NcDf
zxSq!cyb91J-c^(%f4-C45o1`bZOg5l=d{p$-}73$O=#)77JshZdTH135FJ+d)oN|a
z_Kak0vFI-$c_t#-z4t!(=lh6%RUKM{KaHvHf%$wqLtnA&o37v|b%ljZ17nw)9LlCn
zjbqQeJ675*kZ`Vlj(2kn{r5AC7=!*;<cPndL(IfvmRp&F2=w&w$muB#Lw~JWIjxxe
zpa^XdXCAIMza3mq{+#3e^K2SJ${1@w`<p!l{)Nu2dWH)rK9C!SjwM<n?dLh19Q8N8
zDn(1Vh}E{GS^}BP3)zO37Aj@3-5CY*Zb+p`491K@wZ?987h;|YQ~aPo;~&ls?f9u&
zea`2i7Zzaz=oF1_W+e7?HTyZyy}`rXtAYH7v+6EKk8Wn4R(5konUe-2cc_!5|NW*P
ze0x5EA<u&}zwerx#*-xUo7)L^Zt63dlA7|kTLrf+^=e%O9B+;2mJzleK(zCRL?z}i
zQorHd+iUiIawcaL3+2+<fct5I?&Oy#>D$h_{WGiPF^X$G)ZZ3KN@f$TV9_R(z0`!9
zd@;Erm#D*+*kyb`g)s0G>J~+5$by`8_}$Q_;Z4}eZi3GL=9}tB&1aH_=ZK)$qmi^^
zf}J#I`GDliQm^D(+xg(jKYGZPdym?#Lz0@}UFM~o%c7y!_!BVGyNSaCq*fvRyMHk9
zJ3FKz;)|h<$eu~w{9<$;ZczZpZWBeJC0!m;iJ_d50Nf_5BQSD)>rd7E_}Ph9dUzMx
zLgA&|<3rJqW!S?$g_B2Ho99Z-<X=anBx_j8xkmrS@fPJF7HcGwk1zJfkYLmXyx$MS
z_4qp>7K<`JO+w<u*Uaa{O7Em<`M0IXc9z&R-;bHG_y@D;90uOHDuZx|bg>F4lbSba
zQUTmv=0||kS^AEKF*T${za1GI<7UK(#rsVkgK}X=hV=P9P`P*45jJfgOeTD%fJ(da
zk)?+_zb`qwVL3yUUS=yKemFE#{tP=*e$a6%9xqL=aO8X4$GRy~wTPDRSR6cm&&@Pr
z?mJ=x)*rQXOBfbqknf+k<I;>-PyE!sF?ALC#NkFml;oT>Cgf$~hTxiC76>_vUb1}W
za#Sx^6R>=KWUD+wIbi)iwqN(`K?ziNt9a+-KK5nPH@16k{pePV1XiZcW!4NbTN9Jw
z#D}R^Sd>hLU5?v1xos;hNIaS>8u&k_bq^L-8<TNA)$W$X2Wrc>X(B_C$lF-Mc*tNR
zI3-$3Vsg(B-r<&~@Xww6Q)-_d{%Ce_xkFBLRLY1?GxF`ZyO$wJkD)zdRU;JiH}ze}
zEN6y+tZufwzfVWZDyy1eG{Q^$><^{>%kCwJ(P~fb6aL#ik|sY+ly!p*Z}F-o!)wyi
z{c)2=&E}zry5g}dls-)Q-f4eQVhG~kB@}<RWfoEkP^HGd&u31LQ(H`KZGk8?kgI6-
z_hCKLZn!G`ctbqd@{i7vqo6$*yT_96kYh?}gxUD=;D=moR|YJ<{@^_|Vo@>pyugDo
zn!y`9FjFU8L^q;@AAi33Joz<*1s=$WTrz8ZqCz&LAej<j`{S^GSE~sKW<e=H9`7?N
zOYc4N4C1*W1tMxA`pPq+Cs_Hyi}Q59Dl0zlo2{-=z-GU)Qqx8{PngX{h^J>vw$5)F
z4>I<aOAvnPrwA2!C?-XxQoO``zden8eWaEacMt9D_xhgiJi0cxTGvWiCm>%$o2;{^
z+awgs3oCwz)~$!1<}~MI0G`5aB#J^$m;kL$$?mAiJ(4bRiIKlJfw=r-!;G`WenE5u
zU;y_OiaC)w;0y=soUBQHdvoWsEyH-Q1pz9BSB9~pf~dmZkhs(zHiCycd4DwD2YGbm
zo#{XEm!!#Y+x&i?pBVgl8RV##Yj8d7T^EALPo4YEk0JPGWd3DOrGz3VISYkC<g#%z
zcg+6<dfM%=i&=A~6OTnU;mg%KP;*_|`0x<&%UeY}1(#T{Yl=*}@Zv*6RYI~r1~jRs
zTM9rmT-7>BYd;At90UV6brk)fqyq*2d%BLqq7G3Pe$$eZ2>PX|hsbYi`3EsnLean_
z?+Lz<R6j7051NN~`37S{ab2MoX<6MBf9h)OEvANzhfQ#$PQHaRZ)Iv~-nA5JJUyOD
z2Ols?i{D)NM_wB|*mdXJGEp1`#~6J#NdFeYd+d~z$)R?i@WJt0D__m1E`oZ#)ja6K
zN7TtftloYki{FZX?}u1anmT5P35OzooF;dPKoE*6gsYnL<~G7Nxc@^~PJdKv`~MM^
zHPK#pU9$f(xp&ate%{W{d-Gd-F@@_Ray7SIYnKw^f0c(W&3uOyQ4d00UUo*Prt$a0
zkg7L`opbAXSg=*v(WCXsb+W5&!ca-~qi*0<%mSWX8fnfttT=D&c`$1*2u?Splb_^C
zH6m3(#7kJCw=;wRYDDBO?|B9i#bBh5XEBfpvx9J%8M2Hi!e0Ko%~JU>^Yd@ErzH4Z
zLhw4KGva4BJ&GwA#Rrxv771C|VWN@XiHr8v#GdMuv5Ss&t&-r!7POlr?WU_k9xxTM
z?Jo;P+Jm=SW=GS2*k4^2mh)Cgw+0NKiR1iOPkA@Tb^pr#cf6Q%_!9HpO7~A^H42^{
zb2>$2YJ?-(K`LSmwULqP&$9-hT9t<q;!z>kFwi@r?t1ZQWA{g6J5ad@BLoU+B!rT=
z$EsH^+?S`j`FJUUwqLq(knnv`TRwEaO8{^X))~s{@WA*8O5gLk${X5D0kBiPmA4CI
zI(B35Sym$X3RYL#c|$&>kRZfCY4R6FKB1-}Q^;SE8Z*D}7~u=^dEef-T6KBG6`kfd
zy%tj&r|<%P%V`Ifu-O5!5_L}?Q)2i?dE!$vc%7%?AKQW&DCGOeL7f+B4hU>^%2I)N
z562va9d=rl{uBvB?W33QwQNF>#{<Vp9(>S6%nzuA&2EM}GM1x2$!l!z`{=d_!7*)E
z=z2sW(HJo3fg1L%ws#%|wJ<9kYJ3}?Yv(w!pWg22%gc6;E2|&J%ust>c$>tbuLgLJ
zbar?osxIcR(&%~O8G{kC|HI+lV{FjqUpEfn=L#kU(P<D`IZE*f{(1J^_J<5Dd7}zx
zkn8tR&Ohs)Yyopic|(`s;-#KAtS*T#Zk4*-16fls6S!-k-S386kfuqF1AazYW-eb3
z8x<9yg(O#5Rz=5q!TyLKE`y5Ir?$$}6^&q1*&^5$%$;59O2reP-4!Skf*8$5$n{Z!
z%EJoTHhp1K{Fy>$>N)l**NyHXmOcRgGmI7D#Tco+<q^!yBIeC7V|jk3S8f{FyAmql
z3~TljtJqIi&}dQ8jYupQ6@e97HPWCE<mFxOB-@F`(gw@xiu4;=Hx$qye_6Vk@5g&t
z#Rv9nGn4g@{ni)cD_QI#F*!L^t6!Am)~91rIOga!lZ3*^Cx88Dj7)!1^&O7D5GPr3
z2h$r=jw$plu-~;Kyn{mAf7ty9R_n-Qg#CC=b$kde2Q8Z$MLr6)mv0UK%Q{B1j2Q0Q
z3qR44jcn1=&{SFzk5?a(Ej{v$f%(7&sSda0pIZHO)Mquq_AZUDS!_(6Vrxo2QzDE*
z?h&CVA9<uin!m=}bR&NW_UC$)d||h%fBsuo?f2;W9}oDf7CNiIaAJ7s$Na>)X!EtS
zu_^h#n&)>our9D8D~cf(>Mp2VUsOM>Pgr$+!@>(nD%E)4e)?IZko=>+$}FpxspMme
z_5|Rt&Jy;gQ%s#H4p~6c&(mbgs+)2PDV(IW|N0zy5w-%Nu^-bHo7zjG_3f%K%3sn@
zR(xa(rKTXT;Pck=muaU4+E>C}i7cJBguR6kgWT3H36=bozH6P{^W{Nai~P47q`{Jk
z_BCg~u=-ExdPoU2c{6|57z`6adAt%*jIyvej{}~mCuHQ@1mp50P=T1w!(%=00)LoG
zqnM)GgCuk;#Fj)KMaRD+4nFMhH+yu^#JS}zU+T&(u>X*MXb6csM;}vw9%ywyq9-~j
zZX6eD&zRTb!UV(KTj~8rS}VurEpI6i3ku|De+uQ}w9gIyim6nT(?Q3AI!jkQ>Fn}U
ztN{E{b;vqxAH`6~MC@;)CkF1rTT;DqFt&S-&S*oPj57YW`uzZ0bWdb{Loc`=qEI$b
zuys)o`t5UC;OMVzAB>%*m(v#Ymr>^Qmt96@JrkL}q~5W@B(V{v5wp_n&b-0o!8qT~
zn(gSsN>gmetR}LbaOily$>`$_PC@=T2}3AZ6i}tiA@%l)7{bP`*l%LG!%AH@P=PMA
zT7yPMTPjV(LcZ9`uOA$vXFv_%lMi0-@{BfBQ!FHwXTeW}up@i-jZ!idJrgW`qoo2$
z5xy7$y`&30Xu?{%*4<p;jzQK>?j@9)hFi0~V-GHI3o*6v;7>BKaU8kGu0hqHggLCj
zR~%JmF6m<ExPKC2e|+y7jeO3A3?Nl|gm*(ulKT@wZF`H4ub7kXk(Tb3B3K_T$%HrD
zh%1fAh9qmU*RHfZZwPD^tdYd9q-`{?*}erE9uLB$S9SE=YG+J({7j%5;zehB`p}+o
zzkH7W0##s=dv|r~U$~<e^eLBaeemSp0*vFx`l2&{z_{}#0J@FJEA3;69B=Ag0ff+j
z`(*wWmUPCz__x2>@7XU$_g+eEIz&^4@GPM#gmNuB!T5*p1r$fl|5~*+1&Y)aSC}CB
z2+DE^1Z$a`B~hZnW})xe$9|Wr3DFVMFuGX2Rfy1yC(;V`gicV`7QAp5^jj8mZjA2z
z?VTF+U`D+rS?*+y5*aESsJN8c9N}<8Tkj+vW+QU0<;jsOu3!00@`UbxFejp_$Ad#|
zeefgFN}roPaz-O!4#s$>*uBA913<%wq3`(M8W5JCqm9L2m<vaX1r%oMHBeHSVs3$8
zNoEyKzs{CmeZDswfvmGr`}JY!EX&ezw%JIZ+d<`$K7odKbi1^$&#s|L40Y+Xo%m+g
zlF@U{zFR<Be?+OvbH%;rL)Y8@E#uDf-4`NbZq@?0)9nzv;P>cBGt^H3+o5IYZ_E(r
zcxDvl`?j7Nk;O2$!_AKG8|Q-;T>o*1eiPE4z*D`b<>{%jg)gMh?-osur)uXeNC0Wk
zD5}C|kBH81Uy0S-Hl-S&;@Tz<SuY$5-|zlU5}g03U&4YcT$g*vEcMs9mn=80$Dbf<
znB>Ztqg}Rbp#hh{C2|5%!C%KOf%<-HCP<Mr(Y9`$H`gTev1E9oFv{`;t=D4iiRXOz
zXYCk^G4ClAQI~?EKpXsKD1zf(^If!#lS&|O{k<1&4vw^{4PL|9=-%ZMTD6l07aLs`
zeM9azW=rblzR)lKGYbH~{1EWl$!utse7m-9sytnAcsq>!X|nF8T!4sk@PnYU2B&er
z#Hi1`iCcdE=Dy_tKONPhM(4h(bIDnCWtA$bl~+Ytf>y5x&=%W85vwn7i~EF@?lb^(
zLMGbr&Tx{s@UZE{nwB7K`-IVBozs`cYeW|7c%~@uJ-SuE{G}4(rM*|0<{@0~*+boq
z+Tw^2qj3Jj4N7n1f*R(aUcmQ6>b1CR4;!u-g%>AE-G^xLZ6@}kcHf*%|JnROq#+E*
zid0$@7xYi%)yf#zEpFyIs%@bve8UU|(dg-U-G)iu>c&I*;#w>=`u2<so_>Dzc$NAV
ze;^qk;Ki^!-4!Gq5A0V{JnjI>V)C&?N1UIU($IZmNh37D3WHH%W6UF{u~&9?tyYik
zf4o3ZYs`XD_Tn@d<f{)?s_(I2!jsxwao0i+*}7^nJI*`+7!=N9Jj8|6<@;%KvMo#0
zHXS0VG7dA(ehc{Z@)VIaa1|UK$^UMb*a)G^A1G?7Co~ivjLbgpE(hIhuJLH=!e&r@
z%!q|;{rq2bePvW!QIIB12*KSg1PSgA3GVJ1NN{(Tkl+%aaknP8yEX1^!QI^*_AxWN
zJ9EzN56+<*`n`AWt@`Tws_Nbz`3*D)U;HkY>tbGedJW0%6Wx#Y`%q`(>mrQ-gh*L6
zqiK<3A&x(oQLQMauj79c8xYDKlFJgu^{}UFc|4r_DBg@sO&sf6fX0dTpTQK~TmmdX
zZ^YCit0GNnhELPvKdBNDf;@$ucMtPM(|Y#y*`dw<)?Mx|^5!Xo8xIe^L>}n8l{;@v
z%@)(A9D;WoZ$Zt7kOK;_fiJlR#=%92cayp-Cl?)cGP&ox!Qlt)9-5?w!pz{FeNzcX
zp7u5mggFJWC)0A+FNV8oFO}se1oTg@Hz)i;VQeUCcc;>Jd5G_RVTb*Z`arFQ{4?a2
zXbcv#IJCI(Q5Yrt$~XS)wWE+6+SbqzsoFJ);455m=XW2`$p!Q3Z(owA;lyC(m#qgM
zpS^FY*{iFoPf@#sJca~LdwY;+hle&3DA3|<bnDm1LG-qy&gt4DO4I}dY3UqDl)9{q
z69%M6WTDaFiamBENL6Em&zOs51kad$UaJj;UvFj2Yqflpk%mm-l4{R+__5gR9cpq7
z)l5kDh`)YUx+b`>MAGy^bc13+XdtCMj8vAnu25;TrrdPK<kw{0ebDv7L??a^snj1J
zUX1^m_%d>K#mx-6KaVDy_mMqLJh#)KUU;P9Fj)Nwd{EW^#ibCiO7q1b<0Nss2qhmI
z9%yZlM1mLJP6(HkKcvRHp`&j!e|^dcTXj1d=4EpXHz!;h6@HMgS8OJ4VPMIWcX6)u
zyBUGTh4Nty8b^hVEmf!0)#mp5<cfN;#AE*sN*td0scntCEpjRJV7|M=WVfd`w$g~=
z!_iRZWPC&zv3hlNA3gkIA~62_b9?=W3Fh_HrCI7J%b1o<Oobmi4)j#fc@f?Urdu(f
z<i2?)_$@s3r(8QG8btmyk|TT93hoRNW`<^-g^A-PC<JltY+3epOTnWV%rY*mJGy*u
zGFU|)xdbPsc9ua)U6#+;Kagm4;y$Cp{f>}iR5yW)ioewVh1npwm4FIQO&UmPw+D!d
zK&kR&<QixQl7_fvZE$O77Pt{TW1b(9lM|CZk*3TP$$&NB!(?T6oyz=G2|U1(Lej~-
zmvpL1Qe%uwdxDhcYwL2big<eIN9Xpgkg?^JD=Oc6G8dC&QoN~Zr+X;--?zN;i{CVV
zhdvZF7q<m2UZs7c^y}I?LakDWDav3izu{PFY1y~mU4@nsOdcsS#C+Gz`bT19#7adv
zQ#kXffk$T5Js?w6Xs3`%aeZG6wi;|ollnkyO6c_E=~#H&wgFhp7cn|<9fj=kF26R@
zKgou;__1u4ym9f0`_x!io=rUC{fqGuD`hpv=by%h;(J%h;5-}O-b2V>;^Cbxp(v>B
znR#LM(-mv+pMcQ#)10-;$f)<A+Aa4FJUd)@Zy}}WEi2`R)jFZAZS9E6z3gxnV;AK8
zd0Llja62CKYFj*)xi*%%Lr0Ep3B$&NfXBWai{%>TTw;wMQ&Sn4yQnC9sXXtpdk-bO
zohUz+$OX&G`!D|a%*|#;(Zmi9Mm``rCb9Bpz2x=mZ&{fu$28lN@h7F?-Y*H*c-6L}
z&fY}u81tK`P&dypVv{j)wnVs5;lUp1>Si<wV%xiMFI!Nv#{^x~#~G!(`+f00pNHh1
zG5gk<R>luWmYJ0iK_GfyI(RZttUR~SGgG?Gr}Y$mY{kSIdQZH#!dxG|O~vmJiHs%E
ziL4T?@%|xTu9)tc_~%>n+yDLz>FyT0xV*H{LDjW)aG;>2eJ9yB_zc!RHvbETNa9Zw
zC%_Q-@5ZZ0e!ec8>2I9IMql5dK>KE9r?}Gi^+n4&NrJJ(Vt&4*+m|<$JMO+q<w-(t
zv|;-6+~s`xMT7Gr{QbUQh2_z2-%vzc(aS|^efp7~@55!K<;J$%b(s289YYjHw#9Uq
z&I@@zg142m9J5W=zS~JwWD<3>**br?q#nnH8s#RKDc_ASL201kWo3==ygtAnB(%JQ
zsK<j;^1$HOq$DXVt!*|XJ)3kpCKiG{I~}qQ!?1kn2dc#wrwAwnLKcqm=?i||Zb>;m
zF`JfGCriSmac~_UMz|e5yr<0eljM53!C{tY4@u4SxOCRlH{g3>TiHvrKMxX$%X$`V
zGRz4Y{LHZKuA`uRyyh)WA;cLBxC-7iK?DCh*3quQ5W@8y&cq*dVeYA}^q>qTb-vH3
zwOhNpbB!X<<dk>!_c3XD_g_jhACbvr3bnUq&BFUt<6ovNdq-CqnlH8joNw#|<R4ck
z?hsPkbbS|wld(yKzK(;&+}&0+?;7t|E4D>svFAJ;Rg6r9rB=|=Nx63t$Dc803``9$
zXyl;R-lmTZob@N6E4k!n_|3Je)5q?y^cxDHr&b%2uTM)uFhARak5fa7zUtpaC7PVv
zwk;T)r-nqp@4&vthhxCQFoeoiOVQ5%iy#vwtIdB3mGQz<bBbj-TN$R1PU&%B=6=-@
z=~KEi|1@Q4aB{|0hPtynZKl3E3K?!Df9Cn1ou}%o#=g({n^=B;Yv%pn9H!$7M@x;b
zpxM{wrN%~asBEwZ`o^wANV!*O>o>XTwqg|AK)JE#Z*a&^(4<_Y+_m<NMN3hcihq3h
z65ABT*Y~~~kS4O9wjqlIR+<phUveHa&zeD8U>TI<4*U7w*-w6ze8j(C{IzU-h&f{+
zLl;%BQw7wwO3(ML1v7eMwyK`e{~>W)xKekIMJDx&08jDm#)W2jbx+maX;MCDCOPD+
z6Pfue^YsbQUpnqnOnUmr-T7wu1HQJl_OIaJsdhg<q30`As5+a)-m~?tfuW&X#Y`dZ
zs|iWmQgQub^=q~Y8M=6C%5vCa|9X(hBBKT-(V*PukHawcl-goNDXU91h-tb0P-CVa
zh0ztVb+xR~<NR^U!oIp5agoL7Lj)X^(pDZMFr1>Hx>Qze7dsJznF#7hxO1-SEvTdx
zN(Wiz-uDm9#O$Gyomh~Gxr-|P1jcaT&@-RCLjx`@PD@YMZgFQVZ@GB?@)9pA_waC7
zK2@q)A6^$p$Qf3sS}@t@WcF~i-&Leu91<E@DHan@jE1`jQb88q`n2Y{25h#s{DN4o
z61KWa);(&_u)l(9N>a=roH=FJ9;jMvdWT9fxMe6g4k?Act!e1{nqON{W5Tk@)Iats
zTb7)5VV1fGs|q=6-hr}}f#*oBpS->T&i_+e+0tZZ=AM#aj;N10>00(FWnC<{?~?3N
zAwxJRdrl0^Ys=-s=abE~HAsI9)%{u^n)`0LTiHGP+dL<;o9!((bL-aI!jsd{g_e{s
zG&%3XK*qC0wX42|$^#;C|K1L=D^o}&_T5|D4l`y2U)1(Epd6%fs(<0h!UB87b<D0o
zSNm0rIG~)xk_8namp|RCsXc2I>%kSRipajV)J{MuG-^un+2tS+oBAWVfDfNvp7l4)
z3nqipCq9K61zh@4_<T}UOKkB*7Hc{VOB2Albj+$Q<_R-xIX;spQk|&b<`0@HyhpqG
zZsd#wj4}lEJU?5LvoydG_j)T%(Xk7Ko5gfEDZFkhnLRiZ3+NJi-5E)(HlLuBk(DJ7
z^yH{E9od*O^kejT-WrI5gV&cT!obGv9*Co1)Y$>Nf<}A`Ig5tni&z@#PTid>cwdXg
zWLgX}fRVCFjSffCw%!5qHGdi#BNR#lDjU-3U#&u~BDUnugOOYS3TqEKbyaU6YH(P+
zQ*d`r#iM<{xheg8AuDj&f>p0TlHBs-OX$S`_Pcz+X>Tl|CS!pSw?O)!i-4lL*d$gf
zVNtjt<#_Y^Q~svK$GmOmwF7g-MI*b6gNdK0*+MlaHxq6Qi%R00P*xXLSKs%>v%R0r
z`x=@I@bB2Z_oD}WxIg@Wmg#dt;PY^mEgct*l}exgQd6EU>7#!f&xgK;BBvtrBSeb)
zOa=aQ{~fWA-)2V0FyaIBcHr+$DH52q-!V=HPp)nl4p4dlUm;c3J&pp;!$kRcpp7eC
zJF3x94*W|@E3COH8W%J>S060NM@z1Utzm=Q{ee-^Am-qQQfvJj!qTjUUxGC3LqEHK
zQ;@zVNzmMT@k~)n2e0dQ0V_q36Jr+H;2>X2I3{>Ye7sP*nH|hDoUW=oV%!ykQleWQ
zH74{Jadc$;9vS)k>}+k`ER&j*wbJ?(2$6)Gmft5X3~ZXB^^6=EuRoF({;cOjz#J^4
zx!4toI)^AyUT~~MDLX-H{ld_Sh2oBA?s?@9&=iw^p@RMy7+Ahjtku&vQ#_#Eo`JC0
z`|b2}Z0kpyg-SV+PwI88b~4jv3%ubLB4RzGf6;t4lGNXKa4V0+bhPdN#V1K;(;=!%
zLAjlTm`geTMI-s@gLLjxTy64D8+QNjz-GTD0+vth?Lrg&pr%)y#BQcAe{r=xHQ(g&
z`Lxxn=47r|Gdhxpd$LfK#&k4oU`kQgX5vDp8r8e;l{#@Y{sb2MIsb)<Qr};ja*{At
zLj{Hd#@pY8@?t1|UmT>O8c+x|F)`s+7OWl+dqh0?bf}+3)p_1%$6}>W^389-ccpQk
zg!s5fxpZTTD`|!-O)ygE{VJjGLZeLD=&;%5#B|lS62#FoSjdEd`SQQ;b$!uL)bnhg
z5Hw%X9nK$?E@OKWxkEv1DOQ6Zx*wuuCdS4L3ymnVC_tC=eNZhq69;=bH%zVva{e>|
zh6D6dz$0tW0WP$e_;*2c6t!kOHM&e+83#wUFPYvERal=+Q{?`d(fV{g{A)7DOZx}s
zgn;j6f@X-YQdj(Y2CjhZLaUNL6sI}vpD!h>zvn1w4chhk=wA`QlSAKM^v(=FI@C1L
z@$)xZH+~63*xK3AIN<3DMl-uRTmNwgOvBN9b>Gs)Gqn{$IHL$M1`@1-@m5?DNB9cT
z8kbR1$S)JQ`4sDg6;Ux$6An=q1fd#Z?a$P&kS~*_Bb|>cUJj9A#x75msQF|Yt*NWP
zey0>?z25R*-rKLOK@wAOnkKr5e|2Q!#(r#{OfjsccaOqRiHN~@UQCiO?ypn{F%r!d
z<21%_lvb78go8o!T-(t)k*o|iR{7Hg7#>*via<JHtirvClotXLSTpwdAk3Hn2seZ@
zVyDCoq*6IcZ}sEvq>4iOIl@gw2AsevF?Bw*+&u4Zuz~zO$-?4n4?FQQ^Dv3^^v57Z
zPM9E#PZW%a@m{f7ZI2wya?l$O5)%G<SOii@?H>0X9Hm^92bt|Mg*f<K--hfSB^$SS
z)_R9pn2Aj8tZU;Nw-7Jt>}bx?-R#fKzx7Pu5Dy4+cH3fA))ym;U<LaIz>7la2|heS
z3%~$=Yq>6F$@KXKUtX><G#N^a>t<tnrF0K#9$-`?<Q&J2Mbf&`BPy{m9rK}B4mNYB
z<u7ikdOE`(eO2@Ish<WEt=9SiJQbL@sK5O+B(m%;Yh6OE58N$Lhva?Gy%Y$kDsq3e
zxKo31SW97%Zi;s-HaSZP$2)Q`M}5yIsI|2@o_2-N`S~?SwH3TI1jtq%C|r#<9j+W?
zzfFjapCM4qsglUE`Z7=#l*D<K)8&h%ep+dnrAb>UC7SHkM0_XTjLWB`m)r7Biw&2l
z+ig!tPp2;LZ%qhYGZ_7ZNFjO+s3k9*h*!Ah#cW#i*RO5-SiDfHq#BqnS+cqMawN+J
zBL?7X?=xc>Kvf96G&ix&Q#3~QjT}(^uZDY3BytjF<gbeO<%Hxtxrw#7;$Q1T`g8^d
z=N9mY=kFxA7@z;1L?~5XBk-T!LIYwB;9%vqk>p?(QNn$wY<2b>Fl~K(Jq;ThCX20v
zL6b8bR9_T{$=O;*UVi>WnLfYiNXqZHxb2I{xBE`+j?oA+MfH-kM7IVbic^bwV?4so
zJ?bmgXW8PAL3HZIe&vse{A09V6|gT_POk|bP5XQp$m9Nr2m^rGbuu5SkWg!>tVC3F
zo$DXAVUC)bnyx2H_XWqy?N4lD!mk2>h-f?KePm_}H5L(soP(I+2+kD^mOTRlAN}qy
zPV}2q%IjG<TnA#P(}slxtkMmt^-GN}6Du~v%~!AxMiBZIZbb`08*9nPoFSrSkx&y9
z-HGRJ66k<&!YZbhsy9n~?(5uNP7pNhk_z!S4QozH&3SSJsg!6}2Q@nF!mwEXW9f}1
zD-Zn5n3l|g5ud3TIM+u(iJgGW#_3AW4Yvf5kF=|j&*t(*C^ig8@L5~gUsLj$l&8(-
zvEL#7Y#gW6#ve*Gz#Agcr)0Qt<R;i!ZYSkKLS92yR7E!k4alj`sHonKj(|#&KF8Z-
zx44v)u=;v#RMcL@CPr1zoCR+xS6uCt<Wna8ZznB$sBkpK9p_PtmA!``8%vzmM<`zc
zv~{-*!6`^K;b^il5-)tuQ^h5AH5aLwp$e`mOnT=N{t73EUxz!-R}k<J<iacjBl&oF
zWmNl(ZX_U7bx-6<?oZ?*#>B+9dwRZD2<zt4mRGBNqbOMQ#_9t)UnQd8va<60nN8aB
z^q*awk&aZZf9pKj-5ryd`=DKAzQ5so%{)JwcN$)C|9M(R?O2wTbS9#>asUif7ZFpb
z{AN0d<G5uoj}~!IC7Ro20i<i!8c)LSY7a!#KQS?192{6tQBmt;l?@W}N0Yv+$56rf
z2*LB?ZI&;HBjP!5oidy*Ul`2H(u3H3cAsKV90=`k&nG431kuyeZ6`Lc4==c<2}k8^
z07@{kKS%&L6w9?kh_AI?qgefuxQC}FpRKJe4?llgY;5Pl^&tVf=?BWMw<pWmHRc$A
zZJG8)5L_M3jpc05bZoqT(=glBbZ;8Qvwr2hh=BvC;qgmY6bk=j_P5}o&k-tTm%?k&
z(b>yNdyg3ZW`;wZM@_fc?VNzFP_kV)4d}>LeS)cGYS`S=wel%%E0_LSFzsr+9a*&C
z4Zf?ZD<~m>&GiV_Q$q=r#PSX1?fy#*4mCE52^droS~VpAICLbtMOw5IwOz=}*ZoGs
zjg3w0%(IOvDkGQaDAF{V!rnW3*DY7#5b%|*r#IIEnDn$6FGW?oqCHoAsM95queTc4
zE)trhqbxMy9&=^-^R15;R1GOyHiH1U9AR2DoaoqKPJ2A{<GsCPhKulp?(3D%IbF)p
zYg@VG)Q4#vZ~O9CL?>lISAvhC+a5Hk*hz9Kf?}D$n`qd5%dfy@)#ZSiKGF;5jbPgk
zKcouKzq)8>$``W&P8l)z<UQK*jH)n_vd(R-HGkvrxEqs@*^6b9@i*ru2ogO8iJG_H
zbQ*W^jzq$KR5WAt+H`1J^^HyI#H1whIzNTxw%1gn(j&IA6%Gf_r~{KBaWGwoP5lW|
zzy!g#Nnfa$CDrc6w+ryN9QkLiS!OZm%9u7PS7>K10$ZQ_1;nt<4Hb=J!I2}BzIo!z
zptwL1H*wC5j!_CR&ht8#a}Ig-KvdjBS{~PkY3BCM%Ta!Z)9Fg<$E9bd0fzpq0WL+I
zc64fSiLa2>@a#UGhHdIYKQIB1AYrw;MB1@YAg6BjH!|clIGzggTIBBNYjs_E&9-n!
zN5$O+-2HNPF{GLurC0ARKuFU)YTv8C$!ff`=Elxu`71UaAzkk+bKv6YPom7qlU;Qc
zfI&x76%H@pkBvE)DTzcUTzh26zFXFTGb-RO;Vjjd=*UTPD%Om<>?7mA=SB_oM`j-y
ziAo)5>~xwvEv6j|whQj)P#^b#arRwm%G5+k_7G=SNazO+QRPjE4J>cQqO!B-{iD#~
z8TC%SxW{t#PWChX!07sL`$`WlC2{5>LZZzWL;rWvB{@%o+mB1kOP=twgMs(AL;*Rc
zh%-z|N4&`c|4xnfugVSGt+a_(Y@@tcXv2hiZ;Y(vK9kUL9Mgxs%ax2~(#_<sm{c#I
zL8MxiEH`L<hlWN&N%`~c&K)A9yaMn@of`9wtS^DI3=B2qjV=`|()U-YVR3OtKpe$*
zM9y_FJxc%Ls?3$UpvC01nTfqk6tK}x*l?&C;``4t(*@-sT;|SKlJZ$tS8-MGr7t#}
zrm<PxBtg&zD?GCy=EWxPs{fOGv&60{s30#-?ciB77<D^8(ctX_GwYR>WWeEJ@l-%$
ze9rI4$jAWhYdT<jXiDq<1dAw@%87g$01NOe`o)Zl%+WL-rv|Dk)UwOQQ9d#QJt$<d
z7IfMLLG$#nMg$~_#^Gh}pYXbvQbTkfhgZ|*9wk_^^wAA$qw1J4z}nrvMzH>6)~)9B
zS#K|fCGxj<_xKD;E0f~kNdo9rzv{~mMM_HQub^x|t!6>@mTPS-pt;WUJIR>?pQbAS
zD3hC0qE<}H^vf=|D?2mmG?)tw`*%;ioK|gS`5c+3f5tir{sJ|qY~;x~xE8Ff^g|Uy
zCg6^4XJ_~Fa@+27^pDl^=4im{v{lm6vq?eO*5-F#w5t6TElO`h$I4@8D^#IJ;qanx
zbW#O=iU)V~6JjDZL2d?WiN8=B`9pTts)=}?s*}6t3aT*{JHaGf5=}GroNBCPt<IZ<
zE3yu|*w`?hE!72h0RKBwRMYXSFLIee>CGoihl-B}*xR@}#JCdG>YpobFPh9BxxL!5
zfq>DMTQWYOr}AM{(D+02u^=>`kmdbY1HzE8;`yLkGe*D|nYrTWEQ*Z|seCaqeO!(J
zEiJH}aB;H6LKW(y?a`LYcBvmwDkZ8QO?X7I%<$Pbr?_N4BO#yE8|vZD!&PJ&Ixwrk
z2oADYbNpN+*C0c+&eWleq~?7%o50rlt+qP2`#oj(6b&5U+AV-x<P{XerKQP<h(KA*
zmQe8VHOZ)e4kwfn&#yDe>6jRI&WRYFL=ALcWHbB)!y^O~^)suE&dWR2tLK*lJp`S&
z)7L6(<+bm$@Br&C4T~fdd`OWHpI=;Lx0w8B+kDJLNkyeBbH0}=G1UDF3CsQU`PO2k
zg}1P<kWaj^HhqA%s}mM^f3Ag0ULaNL1d^X$aYYc4j<(#_AwQ;j@^8+3qE5`funJL=
z#tSSw9iXc_TMy99(lS;WabC!A{i=es^-*TsA@;WVQSq{&a*+&yN0-zPNlguQf*>Nl
znP`3G_y|{HhU5D%kLO@Ph85pfg>P-%-iEq_?gzZ3obts<>Z#dcdG#U0=rLWCY&UG>
zh~fQqlvSc)#^QO3jdQl>F({N(nqscuAv1n6u~l(*C*y8cb`zPsq>+qHO8G`T;T1jz
zO9F(p&r=qEF&|^A8ZM_^&!3~>1iW;ScZ3$S5#P&Cm8HyB;!+x;$syPx{(n*tlp9dP
z2&8H<$CwzxS^YXc1nmw^3ZVoDEwU%1ff!d=;X>%_gW%a>ux-&BuQELE{F6JeXZ`q~
zKTVQvqBhwtKH<w$P0Coxh!ROamrP+U6eSzk9wG=0_x%|MqZf36+)%5(R{k^-kf$ud
z8A1}-XcS8z*6H*=L_pueFn@uL|C!m_0UnDaII;Ds9)uOw@Wm+iu20==j%(O%f?6TN
z&);pB<tSAtAz&bcMcSUl3Q$NqVkf<m7Rx|b3djH-&q2$GX~055yz{5qnV+FB2#_M+
z0I%RGu23~8Fs5-8z`PI9?t_jHIUjQWcSh&zJ^V>E`$VRHZQp~RCpo6?Uy?>dOJiXh
zvhGxkOtood&$e&!H1**v^i;gc7ZEa}gphyV;3`x7DZslgl#Yv;sNiX}e6<=CdcG_@
znR6=_%0oEWXoep~LjfH2c1ru3N$=sUR)Vg{zFxfxNmj~#V+NXsQEY3M!nAbi4BjQ|
z(QZ~?*xz6a(@N6{DY(ICL6nWJ>{A|8{=cDQ3Q_!#*X%q`b@J81ROs<?nRC-?-#>^S
z;qff+vQbXLY{t$h_`AeqEh|w)O5z}dU8Q{`O>c~^Pdwe6O}N&68J4d>J1?yoo8u@o
z-pQkV1uWHk3M@b0)zkBvS~dZSlVAKEH|uxEuh0-I7JMzw0U;XyMJTb4#8g@zVT%KZ
z#JWeO=a(bHANd$|#AcBaNc4NxGy>1vIIA~rZ>7&x-Lgl}->8=QvS76C#?;>BIiIg^
zQs*5%RnmizSIhDh2%Ms^oCLTyus`x>sWC2{->u4Ygm7tTX>X<&Pbp9p^f^CFe2XrE
z%-3t}zscYC5eRMAF}tiOe}g{fWB*~IJT-wMhA&Z)VXT+n4LpE9Kh=GacMdeaM7?T9
z`!=F$-$mYV7)Otcou3~@XBB<+GKPqB;jrDTtRMQ}qUbI%MWZkMWv-p}pV>V2_UL-4
z`Q1UW=2Bl8_VzZTPEANs5<c)qmcC(*`P1(sKIL63HqQ72LP4Q-zkNr*i?S^*YQs76
z3O}HUOVsB>N!)&|d|Ua#B^PA)f>e4M&|KiJKO^@J<Xz^EhkNpUIUD;V!m_*lp&pzO
zo?-WOs;GGoOv`Nd@^s$<q^qHTN(TVTGb><bqw8Yy3A6{r(khY47yI{PjQ^xH3@}cg
z1!KREq-Y6HSAu6uab}=O3IR1TCMzRj3{c}Ghv4(zvI%l0*7TefzWEEB5@OiWhfY9a
ztUMG{H{^k${RF#d+DX9L{)p8Q&UxyhV_~a*Ep%#ClCigU8TA_eygWZ{?wQwoynB2E
z5Nl?(Zok5tLk|xYwhh|rko)!HkDc?QmUQbV#m$wQFD(<No=a(0!r9;%v3O}^-<1}R
zOLssD4b8fQT^v~US>K)Wnol4jj6xwEM)T=Zzkcu$(&@`kO@3n}p|=wIBH0$4O90VE
z42h1Wp`Zw`U2f8^(J!Daw{;x}Cd>F~y8La8!M?)wAp+ospPrrl3){)41;*nPPwix@
zq0owb!C;G76Wg$h@$vB?SA(}F9sor6ckExw9|CuO=DJkZeahRum~J6C0=yWYlPx#(
z_Ikv{U|9Vrj#2><hO*g}({JZe?@r#|jvz|T0r4~_zBvy6QlEkL&RUB9K}?6dF&k{5
zLk%cq&YS0V;SwToQTDGe_Kx)nlG}LkXXQALNsa3~%JMDuS8a71=QC63mMNyXd|GN-
z5ShCh3iBn@AaCT+*+XWYl(Z35CpUDU1dz)ed_GB1YVSC1g3cjdEeJfv)|z64JuOGX
zFT^(3T~CdB{Cw<H8{q+Azkh)M88$?V21|ZsuU@rG0c-z3#r4}hE3a6C{!506=8MKO
zJ5Ucw*6l6^PDK&m3VjP6JPjxT2D8U#6CCo*8cmU#j!`doJF93fa~*-QkeNk#vg&my
z`c~nG^cgP&cCef5e+7Z!ZGiir0=aGcvi29x&aN(xon*5?6(8%xy2$>1sT6KI-w9V)
zK!>RG&2}txtSx>BdV#V{$VAJjXaFG<-#EQ$5;-{3n4M$kdu+_^{5wPn<0zeFrxCv=
z^Ly$5C|zh|<d3loLF@Ud-?dhAFf5kSv|xqw!EDiB9_KyuVvW)&fNHX<dGv8ZmcFcE
z8N<DI6At(5p4hU^(5;C3*DZ(OX5M+|LuKza`}!e8V`i37KuYGTYY)Ex?CU4eC4sZ1
z&nG4dVU8FS!or!IonJvJ*f=;7SzlmdV`KXV2XkZ-nV>$9@PPn)L&w5W-9No3aMV4L
z;?(anO=5=<AnF*;UsJxf&|#LO>-ouu)N*b@JR0Td{UXBeSwDNLV6LOD24IAKlXEtJ
zS#SslIiQWgf(%Llfi$2jgNco;R@V-2IL6RLquJGtT<8yv7zf&}A5}aRC`|DBsyt5#
zY^_iF{7!5{MVSv*o=Ytj;?>n)E5HB(2z%eLJl-5rv9e<LFWR-Iull_{=a{4wsDgBL
z4lt5tR?Qs=Z>ZdLZpxouNo2lV)$>aa(QVZVtw%J_ec)f_2Goqf4;2vbsaxlhB?2_G
zP2X|=x!$N)AexXCt_W0d9_<{-l2G=zZxRM=3!&~&1$+;6OSM20BG{(0Yd+u<pyiTw
z7DaFI2GRpy3K83Psd?hXZL;0nsyFTk<kGS6@Kn{*x)*A#kN~;B!tw{G(pEZbN`O>`
z(|A=2XzO|Sz4oqg-4S(<{sfO@<i2hR-#IR`0*xTURRwln7ZX9|I<N&^^DOo@EW(E@
z?P^mo2?<Ob9C0-@Y_}B;8Yoq;+<J^8X|~7Z4u{q3a8CMSR%$kb3|-HWJdL}THu1?Q
zsy8P`N(RP*g0=h<6CjlvTU!MUz0Z4o7=}khnF7XTns{2iXY`GNZXUj+g*L(PHgh}S
z5GKj_6lJ=+fWH#pQzXt675=ZJJVW8Dy|M9z-NL64Mp}tVZ<DA~niKe&0MIT;6_&!Q
zCD8>x0zHR)^QcM*Jr|m^Qot6t1%cw!$HM77)t9c0Ys0)jZYVzhT_qTv4z{RGK*a@4
z-Rij#-tchS_7%`4zTe44b+*%9o$Z+f{G1-}^Nx9^`<5#k1}n5rPP)Ypa`^VJFQlV&
zObK9%l$rfUhO)`>$5Hglbv`aq`R&qX-OHH@bAYzWH=6><J-_?yM2qDnPQchqJAT6d
zSd1p&mncw3H=oFX4@5x8si+u_?V0V!q4fAo-O~0Qjmp$IzpVgyD5EVDkv~{V;4}<u
z;S$J8H<-w5IC^uuIN#_*lgeddywM%{{l^bz33QK_`(0kZ6NQ9?@RkW|k(vk&-rr;l
zZq48G^LlfoO4^}r_VDX$9AyFXSju&0^Po0LDr`AnGK*#*bGuGe-VhC3d~;)CZ?=>O
zNDcAu@Sx-1^Z@0_hT9b{V6{=4c1Pij{#AU7AQR3|&XrJqXx1An;zY*SXQV_F+o}kO
zXdOQ6pu9*8IYN)o!q|68o~st$61PgYQ~`oFv!C$ba@<^8yk>U^28qY99R{D0d5S59
zqR{<Er=4L6cJ|AhW8jx;`BW}H&ky)4Q2u}a(rT3HN!!{o(b3U8-7MOD{P^+D|4G!X
zzH-uwH-`L!jSE-|5Hku7VNjRpiC?rKu27=m6c?lP#}P4aoD+u9&?$~cbo%r;a{}4z
zyuFL=D$E?>b-UzW-mI#Q3vgO`C1n&y3Vmu$i)OjO8@QF}H)EosizG7X+uPeW9AOu6
z(usRWu2rZU(E9)Hf*8!`YR?XQ8sF>BkR=pic*hd0-tdwIr<BTY6FOS@?d5h!wgyqG
zH=|5ZSNjA=39ItfUf>4-@_f6h7>>($c6&=hMHL7LJYr(vlGvQ3l#U$MKT5WO7<<kG
zLYo1ZVp|pvl077H$`i;Cer;^K^-s*07>E>$%B_Zm?Kf6C#&DCB9k{my&iWb`2lCn9
zD<IJ_MXw?xe*a&ECR#c=3MwjCVPRoo6B7Wu^MUb&yjyN|Gn>c}|3E5`1SI9A|6*?^
zKE^#wHck3Kob%Pt#}SjLDP18%5JZ{6&kBEvK`BL`Fbx@TL^w5D!s%Z%dJn!&!aH`-
zM$@GuceZMpZ{}T$IhT^t0yL_m+O;KzguIi8A|3$hFhdV?pX8DtkEiX5mpdcUz=7u7
zAsD!f#hg|^<tWba@C(Swl#KxT3PDN61|0(rLY9lbCL;EN;trcn8Cwo|n4bJya=I^<
z)Xr~rYbQTv`jQ~j0=8HX2g2OR#>Q7Yy`>+9Rtq(BsoZv4&E9@JDILbh<6p%({o^1;
zYcH}lywFPsa(FTJ5O^sKnPqQZL<|D7@48e<P(1wq*lpYqt%!919x+>?!wym@!gqhK
zg>uw|e_f*~wt^kgEY}=~K#CKi4-qhGXws{113cVRRil+ok**fTgva{c=9RXd7;#Cf
zgSA&T-#!IABP~<N$2&N&)ZXRNgeE_A@Bt4GPeoOA<Ym3Y;y-#|Ha1l5=lTEhj}ci}
z<d|4k(h3T7F3Lq|;o-<%zI=)IZAZlgu0#+O74_@)@A)Qt&RE+Z0DGqB^8x`}Ptl+t
zVE|s$yqC5iz#*p`fH<(DuA}KaT7RsK6T-ur+TApM@YYiz8Wj&wDeCl=uKlEyBr8@&
zpPyr+A9Wy-86LiW>A>nE#PnBo_ba!k1%QY+lO12DfE5I237%Z73v>~N4-*r3tgq+l
zz9DNg4SCrNuwbyd)ZBmGc;DzhUj7|L{BK@g>*7)JMJy%cP1Y)k-Gud5gOA%NFRDX`
z*#sYx>cT_3t@&swDJRR8Dua@5gg;VtSzo6!d=Wbm{~jE|z+M_0+W%?FO_!Wf0en0P
zzU~6gi4Ku$;!NGZQaT3Pw1wV_b?b`ZhW7hTxlHDl8IVz4wCukQkYXg$P%^pPFVN<K
zimK5dq&zSj@M-?~BEL$9e*8Wqcvr*DI0uUgg8^v|s01II1R#O8g&;B!9@G4=sd9@x
z0l8o^vZ<=*()LV(-EDXyri$U3HgtSzofl&KA3DA;cS|(__*zCfQ7roGqasQBI#u=8
zw?$ixNzekuI<B2bqYb0_WFjVO_-i^RDfkA7<&l@sO$OC_?}#;INYrI;U@ilExtQX5
z=<;KM_7nM`T^3U&>xgrGvn1D4=p`GS6U1S)ph*Av5I7h&DB;iflOUCS$XL>jQn`iL
z$9H!`XYm&L{-hAfDW=4X=*wLT4Et1zS6@K=ss*SV;M?PGrW7fQbz?QaCn02k=+$I?
zD7lrRAwtx}h@rU2L-{;yK$>%b;wI$TOP)Cvx}`sgKGnl>L8E|Fq>bRPv)U}`+xeJl
z_q~1IML^5QANq;}v4LTO!rOJ{Z@F4CEEd}9(xSm4Y-f>$+9#he912hk$YcuRARpJ@
zB>wcn)hWA`N3yvHYU$b9_UP~@Xo(5<pZf2DRJ1i0uGto+aq8x1DJSuGia`q+zL!5-
z)p1%hK93^y8crVj)5#RpiJ(eUPZ<{0?siQxPod@R|HW8C?bb7$YjU&!6#_8?!(7Ey
z@Ey;O+$yd35FTT=FkYF$9`J~n+z4V)##l<->x@Ss<L;rv8WTonpSkBzfb!HC7pEYk
zXSMXmE7jl@X7aD#E)|B9nv4xwDRbvLQkV0GJtSgP8EQb4`uB)v9-P!FgUb-#YQ$4g
zh%^zXMfq=wmAs%-0R0H`t0a0^(AoQT53;NUJ1z#NNVGa5u*r|07Y7(nZkRkEmn2%~
zM&^J##p!VJK<|6*xD9hbgfLGCA6SlE_wRZ9G7yq(G{MJ#@>Is1{<x4G`UgVXTo511
z#}FymDe$5{&%w^M1I!)+r7ifCdv{Dcy@iX(_>k09SC~b@mAD(f^em-x$Rz*N9ZLd-
z2lt<a=T(Qf?lTV0ch4KnV`j+rDc*S$u|)paF8p+t;DBK3=Vb<aTifkUpd%3fH5(0f
z6=oEC%=90=l$zl6Y6ZS@h6<^?zGdAMsDZ9aDT|@T&rLqqx`u9nK0>^Ks%DYkn3=cQ
zd=f2q9Dl<bwYk*nH>4@f`k%n_U;ZzJh%664=T|;0^ArNHk7{B!dR;GF;(0NgLwOdn
zZ=X>wUB|ch$WbaW0pQE<E;%K;oD)9-+w$|Gf!J(VKNp5JBV_<38&n9wPDsB3h67HF
zUr0ah)Dn`ayc>#@PHnE;;1maYQq>(PtgVVnDPBxDs|w^6@d5BA@$cyN!72yeFz%Vp
za#Spf_n+Hj3OS}O7>u%24kU@ZapapRgTve=I7(rVWD2jr+w+iO5vw&bRq+l|s^#l#
zXS^6z{L4>wFka9k3^kULz*yK<^JgxdAO`triJx1g#q|8gSR6l7hxEHg=!vFi9PbGM
z|6*7Xl7{x-7Mdu)|8h~RTUo4(yVV!f#8S5b9bZMxDKc%$vdCg43P5nvHXjHJMre<@
z%mdtJu;0&+qt5<|#hIE@=QSscc_eHoL*wtZ`afgX45x~ympe-T9{~H`C-{GWGyvH;
iznv@oW09`>0$_wbNmx2E0AHL4B`vNXR`%8C=l=qj{e7YU

literal 0
HcmV?d00001

-- 
GitLab