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Abstract—This article proposes a data-driven method to study
large-scale matrices of urban traffic information. The input
to our model is a traffic data matrix where rows correspond
to times and columns correspond to road segments, and the
entries are traffic counts. A constrained sparse non-negative
matrix factorization (constrained-SNMF) problem is formulated
in order to identify a collection of traffic behavioral “signatures”
which describe various traffic conditions. To allow for a more
temporally scale-free interpretation of the signatures, a constraint
normalizes the signatures, and the matrix factorization cost
function is augmented by a term which rewards sparsity. As
a result, traffic behavior on each road is expressed with a small
number of signatures. Nonnegative matrix factorization is known
to be NP-hard. We propose here a numerical procedure to solve
the resulting constrained-SNMF problem. The technique is then
applied to a 2011 New York City traffic data set, and anomalous
traffic patterns are interpreted from the results.

The contributions of this are threefold. We introduce and study
the normalization constraint. We secondly introduce a convenient
scale-invariant metric with which to measure sparsity. Secondly,
we demonstrate an implementation of the measure of sparsity
originally formulated by [1] into a multiplicative algorithm.
Thirdly, we propose a scale-free framework for studying the
trade-off between the error of the factorization, the sparsity,
and the dimension of the proposed low-rank factorization. This
may be useful in city-to-city comparisons.

Index Terms—Traffic, Normalization, Sparse Non-negative
Matrix Factorization

I. INTRODUCTION
A. Motivation

RAFFIC management is one of the persistent challenges

of the modern industrialized world. It simultaneously
reflects both a critical infrastructural necessity and a problem
with a wide range of scales and interactions. Over the past
two decades, floating-car data (e.g., from GPS-equipped taxis
and other vehicles) has become as important source to obtain
real-time and large-scale city traffic information [2]]. These
data streams can be used to manage traffic signals, influence
equilibrium traffic states [3[|-[|14]], and optimally route traffic,
in order to make effective and informed decision-making
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possible. The challenge however, is the missing values in the
data obtained by the floating-car technologies. We use non-
negative matrix factorization to overcome the imperfection of
the data, and analyze the underlying characterization of city
traffic.

B. Problem Statement and Contribution

City traffic maintains structural and behavioral complexities.
We investigate matrix factorization [15] to identify robust
behavioral signatures in traffic, and describe various traffic
conditions. Our starting point is a traffic matrix D, where D, ¢
represents traffic count on link ¢ (i.e., road segment) at time
t. We could also consider speeds instead of counts with some
modifications. Our algorithm outputs two matrices W and H.
The columns of W represent behavioral signatures, and the
rows of H are coefficients. More precisely, if we fix a link
¢, the column D., denotes the behavior of the traffic count
on ¢ over time (i.e., Dy, is the traffic count at time ¢ on
link £). We want to write any D. , as a linear combination of
N signatures (i.e., column vectors indexed by time), In other
words, we want to approximate

D.y=HiW. 1+Hy W o+ ---+Hn,W.n. (1)

The challenge, of course, is to optimally identify this decom-
position over all W’s and H’s.

A signature can, for example, represent heavy traffic vol-
umes during the morning rush hour, medium traffic for the
rest of the workday, and light traffic in the evening. This
would mean a column which has large entries in the rows
corresponding to morning rush hour, moderate entries in the
rows corresponding to the rest of the workday, and small
entries for the remaining rows. Each signature is a time-series
for the entire year, and hence, we do not need to rely on
weekly periodicity. For example, the signatures can capture
traffic anomalies during holidays, extreme weather events, or
infrastructure failures, such as blackouts.

The columns of H, i.e., the coefficients, represent the way
in which the links are decomposed into distinct signatures.
Ideally, we would like to decompose the traffic structure on
all links as a linear sum of only a small number of signatures,
resulting in a sparse H. There are subtle issues involved in
imposing sparsity vs. measuring it, and these are explored
further in Section II-D.

Motivated by the complexity of traffic data, we address
several structural issues:



« Fidelity of the approximation; how does one measure the
error, and how does the error depend on the rank of the
approximation?

o Missing data values; data is necessarily incomplete since
data is not perfectly collected all of the time.

The results can be useful in structuring analyses of traffic data
in other cities.

C. Related Works

A review of the literature suggests three main challenges in
the analysis of urban traffic:

o Traffic data compression
o Traffic data description
o Traffic data prediction

For the scope of this article, we will not visit traffic prediction
models; however, the literature on the combination of matrix
factorization and location recommendation algorithms, main-
tains helpful insights on this subject [16]. Matrix factorization
is a well-established tool for breaking data into patterns. Non-
negative matrix factorization has been applied to a wide range
of problems, like text data mining [[17], [[18]], gene expression
[19]-[23]], micro-array comparative genomics hybridization
[24], functional characterization of gene lists [25], facial
images [1]], [26], and urban and network traffic analysis [2],
[27]. Various extensions of non-negative matrix factorization
have been made to impose sparsity, either on both W and
H (1], [28]-[31], or only on H [18], [21]]. Our work follows
some of the thoughts of non-negative matrix factorization by
Lee and Seung in [32] and the sparse non-negative matrix
factorization by Kim and Park in [31]].

Different matrix factorization techniques work well to-
ward different intentions. Principal Component Analysis
(PCA) [33]l, Independent Component Analysis (ICA) [34]], and
Non-negative Matrix Factorization (NMF) [35] are some of
the most eminently used algorithms to compress and describe
traffic data. PCA provides an effective low-rank representation
of data, by letting each principal component be approximated
by a linear combination of all basis components. However,
PCA allows the entries of the factorized components to be of
arbitrary sign. Since we are dealing with traffic, we require
positive components in order for the decomposition to remain
interpretable. Unlike PCA, which assumes Gaussianity of
the data, ICA works well for finding independent sources,
given that the subcomponents of data are non-Gaussian and
contain statistically independent signals. This assumption is
ill-suited for learning component-based representations, since
various components are likely to occur together. NMF provides
an alternative approach for traffic decomposition, given the
condition that the data components must be non-negative. In
other words, by forcing the factorized matrices to be non-
negative, NMF reveals underlying data structures with the
same direction of correlation.

D. Outline

We give a mathematical formulation of our efforts in Sec-
tion [II, writing a low-rank approximation as a minimization

problem, and note that the formulation allows for missing
data. We construct a penalty term that encourages sparsity in
the H matrix of signature coefficients. An iterative algorithm
is introduced to solve the resulting constrained sparse non-
negative matrix factorization problem in Section Section
is dedicated to a case study from data in New York City. In
working through this case study, we identify and address some
natural numerical stability questions. The analysis of the New
York City dataset is continued in Section [V} The supporting
source code for this work is published at [36].

There are several specific contributions in this work. Primar-
ily, we include a normalization which allows us to interpret
our decomposition in terms of how a “unit mass” distributes its
occupancy throughout the time interval. Normalization allows
us to make scale-free comparisons. We secondly introduce
a scale-invariant way to measure sparsity in Equations
and (TI). This allows us to think precisely about sparsity
and compare decompositions. Thirdly, we propose a scale-
free framework for quantifying the tradeoff between the error
of the factorization, the sparsity, and the dimension of the
proposed low-rank factorization; see Figures|l1|and|12{and the
discussion of Subsection|[[V-D| This may provide a useful way
to think about city-to-city comparison of traffic complexity.

II. SETUP

Our starting point in this article is a data set containing
traffic counts (one might also consider traffic speeds) on
individual links at individual times. The goal is to understand
behavioral structures and patterns in this data. In a large
city, there may be many links (in New York City, which we
consider in Section there are over 260,000 links), and
we may be interested in time fluctuations over an entire year
(in our analysis of Section we consider data from all of
2011). We take advantage of the calculations of [37] and [38]]
to recover an estimate of these traffic counts from origin-
destination pairs for taxi data. Of course we need to choose the
granularity of the time index ¢. Each time ¢ represents a time
interval (or bin); we want these intervals to be small enough
to capture meaningful fluctuations, but if they are too small,
the individual bins won’t have enough data to be statistically
meaningful. The computations of [[37]] and 38| give us hourly
estimates of traffic, so we will take that as our granularity. In
our calculations of Section there will thus be 8760 time
instants in 2011.

We organize these traffic counts as a matrix, letting Dy ¢
denote the traffic count in link ¢ in hour ¢; the rows of
D correspond to time and the columns correspond to link.
The matrix D can, in real problems, be quite large, and
have missing entries; i.e., if D represents speeds, no speed
information is available if there are no cars on the link. One
would like to identify patterns in D, to study its underlying
structure, and fill in the missing entries.

Our goal here is to develop a low-rank approximation of
D (similar to principal component analysis). This low rank
approximation is mathematically a matrix factorization; i.e.,
we want to write D ~ WH for two lower-dimensional
matrices W and H (of the right sizes). We want to build into



this low-rank approximation the fact that traffic counts must be
non-negative, so we want W and H to have only non-negative
entries.

As a final component of decomposing D into patterns, we
want to algorithmically encourage sparsity in H. Although we
may have a large number of possible elementary signatures
(as described in the discussion of Subsection [[-D)), we want
to write the behavior on each link as a linear combination
of relatively few signatures. We will develop a penalization
procedure to enforce this.

A. Matrix Factorization

We use matrix factorization to decompose a matrix D &€
RT*L where T, L € N. This allows us to write

TxL TxN NxL
A~ A~ =
D ~ W x H, 2)
where N is fixed and N < min{T, L}. We will refer to N
as the rank of the factorization. In the case of non-negative
matrix factorization, we have D € RTFXL and therefore look
for factors W € RT*N and H € RY**, respectively. The
non-negative property is important when the data matrix D is
constructed from non-negative traffic quantities such as speed,
density, or travel time.
For (¢,¢) € {1,2,...,
standard notation

T} x {1,2,...,L}, we use the

WHH@EJ%nM

For any matrix A € R* denote the rth row and cth column
respectively as

We will denote the Hadamard product and quotient respec-
tively of two matrices of the same size A, B € RF**¢ as

(A® B)ij = AijBi;,
A,

g

B .’

i,J
fori € {1,2,...,R} and j € {1,2,...,C}. Note these def-
initions are simply element-wise multiplication and division,
respectively.
Fixing the rank of the factorization N, the goal of non-
negative matrix factorization is to minimize

|D - WHI|7, 3)

(A2 B);; =

over all W € RT*N and H € RY**, where [[-% denotes
the square of the Frobenius norm; i.e., the sum of squares
of entries of a matrix. There is a trade-off in that a larger
N allows lower error, but poorer compression of the data
in D. Each unit increment in rank requires the storage of T’
additional values in W and an additional L values in H.

The cost function of is convex in W and H each, but
not jointly [32]. Secondly, nonnegative matrix factorization is
known to be NP-hard [39].

B. Missing Data Values

In many practical scenarios the data matrix D might have
missing values. For example, if D;, is the speed on link ¢
at time ¢ measured from floating cars, then Dy , is missing if
there are no GPS-equipped vehicles on that link at that time.
For specificity, let’s say that D , = NaN in this case (NaN
is short for not-a-number). Matrix factorization algorithms are
useful for filling in these “holes” by exploiting some low-
rank structure in the original data. To construct the low-rank

factorization without these entries, define
def

Nt oef1,2..

For A € RTXL, let’s then define a masked matrix [A]y €
RT*L by setting

T} x{1,2...L} : Dy # NaN}.

of | Ag. if (¢, HeN

([Al)e &4 At TGO EN “
0 else

We note that the map A — [A]y is linear.

Taking into account these missing values, we can modify
the penalty in (3) to be

EW,H)E Y (D-WH);,

(t,)eN
= |[D - WH]x|3. (5)

In @ the missing entries do not contribute to the Frobenius
norm of the factorization error. Since @I) is linear, &, is
quadratic in both W and H.

C. Sparsity and Normalization

We want H to be sparse (i.e., to have many zeroes),
meaning that each column of D can be represented by a
small number of signatures. Rather than forcibly restricting the
rank N of the approximation in (2), we can consider a larger
N and introduce a penalty which rewards sparsity. Sparse
Nonnegative Matrix Factorization (SNMF), as seen in [40],
fixes the positive parameter 5 and minimizes the following:

L
Eo(W,H) + B |H. (|2 + 0 |[WI3. (©)
/=1

def
Es(W,H) =

Informally, IV represents the size of the “universe” of available
signatures, while a large value of § in (@) should result in any
link being represented by only a small number of signatures
in this universe.

We also want to enforce a constraint that each column of
W sums to 1 (i.e., has Li-norm of 1). This gives us a relative
occupancy count; allowing us to better understand how the
traffic count in the signature is temporally broken down (i.e.,
by time, week, and season). Questions of the total count are
then transferred to H. We first find an approximate minimum



(W, H) of Es,n- We then construct a new pair (W', H') such
that

W'H =WH, 7)

and each column of W’ has Li-norm of 1. Namely, we define
W [

’ ! ®)

i a -
L, HW” -

where HW" ) denotes the L; norm of the n-th column of

W. Thus we have

IW2all, =1 ©)

for all n € {1,2,...,N}, and holds. Perhaps
Esy(W' H') > Ez,,(W, H), in which case (W', H') is not
necessarily an improvement of (W, H); nevertheless we use it
to generate the next pair (W, H).

Mathematically, (/V[77 H ) defines a point in the space

def mT'x N NxL
S =R} x R

(representing the allowable spaces for W and H). The rescal-
ing of corresponds to finding the point in

{(w,h) € s;wh:Wﬁ}

which satisfies the desired L; constraint. We will properly
define a measure of sparsity of H in the next section but
here we comment that our measure ensures Sparsity(H') =

Sparsity(H) and (W', H') = SO(W,H), which we will
consider sufficient for our purposes of finding factors for D.

Definition I1.1 (Primary objective). Fix N > 0. Minimize
@ over ail W € RY*N and H € RY*F. Project
solution to also satisfy (9).

While the primary objective is essential, for the ease of
interpreting the results, we would also like to achieve some
secondary objectives. The algorithm will take care of the
primary, and we can slightly modify the solution to meet the
secondary objectives.

Definition II.2 (Secondary objectives). Furthermore, we
want

1) small values in H to be set to zero, without signifi-
cantly affecting the approximation.

2) to get consistent results across different runs of the
algorithm.

Since our goal is an approximation of the form (I, the
constraint (9)) normalizes the signatures by L' norms, making
dependence on the scale-factors appear in the H coefficients.
We use the L' normalization to:

o Compare signatures with each other as if they were scale-
independent. This allows immediate comparison without
searching for scale factors which require H.

o Treat each signature as a probabilistic distribution in time

(since the entries all add up to 1). This essentially allows
us to compare a signature with itself, e.g. if we have a
signature with 0.1 at noon and 0.01 at 4pm, then there is
10 times as much traffic at noon.

e Compare W matrices across different runs of the algo-
rithm (up to permutation of columns). Again, scale factors
would further complicate this.

o It also allows one to think about doubling the matrix
D and investigate whether the result will simply be a
doubling of H, or a rearrangement of counts within and
across signatures.

An alternate normalization would be based on the L? norms
of the columns of W. The interpretation of what W entries
mean would then be different.

We also note that, in general, an L, penalty only ap-
proximately enforces sparsity. Rigorously, sparsity would be
enforced by an L( penalty; L; norms are used as the L, ball
is the convex hull of an Lg ball (in certain cases, L; penalty
does give a “soft thresholding”; see [41]).

D. Measure of Sparsity

Note (6) penalizes the L'-norm of columns of H through
the term 52521 HH@|? as a proxy for the sparsity of H.
However, this term is sensitive to the magnitude of H-entries.
To measure sparsity that is not sensitive in this way, we
instead use the function defined in [1]] based on the relationship
between L' and L? norms.

For a vector x # 0 of length IV,

VN — lzlly / [l
vN —1

For a matrix H  y with non-negative entries and at least one

positive entry per column, we let

1
Sparsity (H) = I Z Sparsity (H. ¢).
1<e<L

Sparsity(z) = (10)

(11

A completely sparse H i.e., with columns looking
like (1,0,...,0)7,(0,1,...,0)7,..., or (0,...,0,1)T would
have Sparsity(H) = 1. Our measure of sparsity enjoys the
following properties:

1) 0 < Sparsity(A) <1

2) Sparsity(A) = Sparsity(c- A) Ve # 0 i.e., the measure of

sparsity is scale-invariant.
This provides us with a normalized measure of sparsity that
can be used to compare different H-matrices. We note that
this measure of sparsity is unaffected by the rescaling of (8).

III. THE ALGORITHM

At this point, Definition represents a precise mathemat-
ical formulation of our search for traffic patterns. The cost
function €3, in (@) is quadratic in both W and H, but not
necessarily convex in the pair (W, H) [32].Furthermore, we
want the entries of W and H to be non-negative, and we are
subsequently imposing constraints on W. This is a constrained
sparse non-negative matrix factorization problem with missing
values (see Subsection [[I-B)).



Algorithm 1 Constrained Sparse Non-negative Matrix Factorization

1: 3, m, rank, threshold

2: Initialize W1 HO™+1) with random positive entries
3: repeat

4 w(m) w(m+1)

5 H(m) Him+1)

6 WOt « Update_ W(D, W™ H(™))

7. H™D « Update_H(D, W+ H(™)

8 Error = HD — WDyt fipy|

9. until Hw<m+1> fw<m>H n HH(’”“) _ H<m>H > threshold
a F

10: WOrtD Hm+1) « Normalize. W(W(m+1)  H(m+1))

11: return WD HHD | Error

> Global variables

> refer to (12)
> refer to (12)

> relative error

> scale factor of each term omitted for brevity

> impose L' constraint on columns of W

Our algorithm is summarized as follows. For positive in-
tegers r (number of rows) and ¢ (number of columns), let
1,x. be the (r x c¢)-dimensional matrix whose entries are
all 1. We want to minimize £g,, as defined in (6). For any
(W, H) € RT*N x RY*L we use the following sequence of
recursive update rules:

W+ W (DlyH") @ (WH]\ H" + W)
H+«+ H® (W' Dly) o (WT [WH], + BlyxnH)
(12)
These rules are based on [32] with sparsity modifications
as laid out in [40]. We have reviewed these calculations in
Appendix [A] Using these update rules constitutes one iteration
in our algorithm.

A. Criterion for Terminating the Algorithm

We will denote the initializations of ¥ and H as W)
and H), respectively. The m™ iteration of the update rules
will then produce W (™) and H(™) until we have established
convergence.

There are three natural indicators of convergence of these
sequences:

o |[Wime — wim],

o e — o), or
55’77(W(m+1)7H(m+1)) _ gﬁm(W(nz)’H(m))’.

We use a combination of the first two i.e., we stop our
algorithm when

W) — wtm,
[w e

||H(m+1) _

H™|
+ < threshold.
| Hnll

Nl

B. Initial Conditions

In order for the algorithm to function correctly, we need to
ensure that the initializations for W and H are such that:

« all their entries are positive and

e the columns of W and the rows of H are linearly
independent.

The first condition above stems from the fact that our al-
gorithm is multiplicative and once an entry is zero, it will
continue to be zero in the successive iterations.

A safe way to cater to both these conditions is to simply
initialize their entries by sampling uniform random positive
values. This works because random matrices are usually full
rank. More accurately, because this selection of initial condi-
tions gives measure zero to the collection of singular matrices.
If by chance this random initialization is not full rank, we try
re-picking W and H matrices.

C. Utilizing Sparsity of H

Once Algorithm 1 runs, we proceed to address Defini-
tion [[.2] (Secondary Objectives). Recall that we have borrowed
our measure of sparsity from [1[]. We can utilize sparsity in H
to express our approximation of D. , as a linear combination
of as few signatures as possible. To implement this, we utilize
a threshold operator on H. For each column of H, we set the
lowest entries which sum to an axe_threshold to zero, where
0 < axe_threshold < 1. For example, if axe_threshold = 0.4,
we set the all entries below the 40" percentile to zero in each
column of H. This “compressed” H will result in a higher
error percentage, but also a higher sparsity value and is better
for compression since now one can keep track of only the
non-zero entries in H (i.e. we can store H as a sparse matrix
if needed).

Mathematically, if we consider the signatures to be the
basis elements of a (rank=) 50-dimensional vector space, then
compressing H has the effect of projecting each coefficient
vector (a column of H) onto the closest subspace of the lowest
dimension possible.

We can predict that compressing [ will cause an increase
in error and an increase in sparsity. However, these changes
are not significant as we will show in Table [4] once we run
the algorithm on an actual data set.



IV. ALGORITHM: NYC CASE STUDY

We start with the analysis of [37] (see also [38]]). The data
set contains hourly traffic data for 2011; there are thus

365 days 24 hours
X X

=T hours
yr day

1 yr

where T & 8760.

There are originally L, &' 960855 one-directional links
(roadways) in the dataset. A one-way road segment corre-
sponds exactly to a single link, while a two-directional road
segment corresponds to two links. The dataset corresponds to
a matrix D° € N(:)FXL" of numbers of taxi trips indexed by
time and link (the number of taxi trips being integer-valued,
the elements of D° are in Ny & {0,1,...} ); Dy, is the
number (if known) of taxi trips along link ¢ in hour t.

We are assuming that taxi trips are reasonable represen-
tations of overall traffic flow; we are thus assuming that D
represents overall traffic density in Manhattan. We note that
D has

8,760 x 260,855 ~ 2.3 x 10°

entries. To be specific,

o p—
D34,128 255 — 3

corresponds to 3 taxi trips on link 128 255 during hour 34 of
2011.

Hour 34 corresponds to the 34™ hour of 2011; i.e., be-
tween 09 and 10 AM on January 2, 2011. Link 128255
corresponds to the stretch of West 44™  Street, fronﬂ
(40.759728, —73.991684) to (40.758532, —73.988843); i.e.,
from 8" Ave to 7™ Ave.

On the other hand,

o _
D35 128255 = 0,

meaning that there were no taxi trips on link 128 255 in hour
25 (i.e., between midnight and 01 AM on January 2, 2011.
Precisely, this means that the algorithm of [37] assigned no
taxis to this link at this time. This may have occurred for
several reasons:

o there was practically no traffic at all on this link at this
time, or

o the link was so congested with traffic that taxis avoided
it altogether.

We will remain agnostic about these two possibilities. How-
ever, zero taxis does not mean zero traffic. We use our
algorithm to estimate the traffic densities on these links based
on large-scale behaviors. To do this we treat the zero values
as missing entries in our data.

A. Missing Data and Reduction of Scope

In fact, there are 2181923 208 zero (i.e., missing) entries;
i.e., about 95% of all entries of D are missing. To proceed,
let .Z consist of those links for which there are at most 720

IEarth coordinates will be given in (Latitude, Longitude)

hours (30 days worth) of missing data; i.e.,

T
<z déf {E (S {1,2 . .Lo} : Zl{Dfl:NaN} < 720} .

t=1
where 1 denotes the indicator function. This 30 day cut-
off is arbitrary, but it allows us to feed a smaller matrix to
the algorithm. Increasing this cutoff will mean more missing
values in D. As the proportion of missing values in D
increases, the efficiency of the algorithm drops (due to the
masking positions A in (3)).

Let L & |-Z| = 2302; there are 2302 links with at most
720 hours of missing data.

For example, link 151 845 is 5% Avenue from 17" Street to
18%h Street It is missing only 40 entries, so 151845 € .Z.
On the other hand, link 128 255 has 1965 missing entries and
thus 128 255 ¢ Z.

We now let D € NJ** be the submatrix of D, correspond-
ing to links in .. We use this D as the input for our matrix
factorization algorithm.

B. Constants and Initializations

For the taxi traffic data of year 2011, on 2302 of the busiest
links, we use the following values, and we will subsequently
justify these choices of values.

e rank = 50

e (3 =5000

e 1) = Mmax; ; (D”)

o threshold = 0.005

o axe_threshold = 0.4

In order to decide on these values, we first ran the algorithm
on a range of (rank, ) values. For all these runs, we use
n = max; j(D;;), where 7 is a regularization factor which
ensures that entries in W do not grow too large. Having it at
the same scale as entries in D ensures that all of the terms in
&g,y are of the same order of magnitude.

Also, we generally consider a sparsity value between 0.8
and 1.0 to be sufficient as it meets our Secondary Objective for
the NYC dataset. The results are summarized in the graphs in
Figures|11|and The choice for rank and g are independent
of the scale of entries in D and robustly capture how well D
can be approximated by lower-rank approximations.

We note that for high rank, high S combinations, the
algorithm forces a column of zero entries in W. Once this
happens, there values are stuck at zero since the update rules
are multiplicative. Our code was written so as to capture these
occurrences and flag them as being a sub-optimal usage of
rank. Hence, these are not shown in Figures 1 and 2.

This suggests that there is a tradeoff: higher rank and higher
beta give us better (error, sparsity) results, but are also more
likely to break the algorithm for certain initializations of W
and H.

These considerations leave us with two contending (rank,
() values:

o rank= 50, 8 = 5000, and

2start  and end  coordinates  (40.737917,—73.992225)  and

(40.738504, —73.991798) respectively.
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Fig. 1. Relative error percentages for var-

ious (rank, J) pairs pairs
Rank=50, | Rank=70,
B8 = 5000 | B = 2000
Error before compression 25.8 23.7
Error after compression 393 38.2
Sparsity before compression 0.789 0.814
Sparsity after compression 0.900 0.913
Mean dispersion 0.624 0.658
Std. dev. of dispersion 0.174 0.146

Fig. 4. Comparison of two (rank, 3) choices
4

o rank= 70, 8 = 2000.

To decide between these two choices, we used a measure of
dispersion for signatures. We first define, for each signature,
a mean-weekly-trend. This is obtained by averaging traffic
for that signature over all Mondays to obtain typical Monday
behaviour, all Tuesdays to obtain typical Tuesday behaviour,
and so on. Then the dispersion of each signature is calculated
as the mean absolute deviation (MAD) of that signature from
its mean-weekly-trend. The mean and standard deviation of
this dispersion across all signatures are listed and compared
in Table 4

Dispersion in signatures (as defined above) can be seen as a
tendency to deviate from a 7-day periodic behaviour. A higher
mean dispersion indicates that signatures are erratic and are
picking up all of the noise in the D matrix. A higher standard
deviation for dispersion indicates that all the dispersion is
localized into just a few of the signatures. Thus, we prefer
lower mean and higher deviation values for this measure.
Given the closeness of all the other values, we settle on
rank= 50 and 5 = 5000 as our parameters. For further context,
we can use the entrywise absolute deviation in order to put
our relative error into taxi units. For rank=50 and 5 = 5000,
the median absolute deviation is 37 taxis with the first and
third quartiles of 12 and 95 taxis, respectively. So, you can
see the values are skewed higher, and most of the deviations
are closer to 0. Hence, for a given hour and link, one can think
of our approximation as being off by about 37 taxis.

With these choices fixed, we then initialize W and H to
have entries which are random values sampled uniformly from
the interval (0,1). This bounded positive interval is chosen
simply for ease of programming. The algorithm typically
terminates after about 200 =+ 20 iterations. The total runtime
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Fig. 2. Sparsity of H for various (rank, ()
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Fig. 3. Progression of Stopping Function
over One Run of the Algorithm

is under 6 minutes on a 2.20GHz processor.
Figure [T3] shows a plot of

[t — wem,
Iwem |

plotted across iterations. The graph tells us that most of the
convergence takes place in the first 100 iterations, and it also
serves as a justification for our choice of threshold= 0.005.
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C. Interpretation of low rank decomposition for traffic

The algorithm outputs two matrices W and H of sizes
8760 x50 and 50 x2302. The columns of W are L'-normalized
and the columns of H are sparse. The normalization of the
columns of W could even allow us to compare traffic patterns
across different cities and different years.

Recall that columns of W represent traffic signatures over
time. Each signature is a time-series for the entire year and
hence need not be periodic. For example, the signatures
can capture traffic anomalies during holidays, hurricanes, and
blackouts.

Further, the columns of H represent coefficients. which
represent the way in which the links are decomposed into
distinct signatures. For example, if the 4" column of H is
(0, 7,2,0,...,O)T, then the traffic in link 4 of £ can be
written as 7 times the second signature plus 2 times the third
signature. This decomposition allows us to identify spatial
patterns in traffic across the city.

The plots of Figures [T1] and [12] may be be more widely
useful in comparing the complexity of traffic patterns in
different cities or under different circumstances. Namely, if
the traffic in a city can be well-explained by a few signatures,
the error of the approximation should level off at a low value
for large values of N and sparsity penalty .

D. Tradeoff between Sparsity and Independence of Signatures

In order to ensure that the signatures obtained from the
algorithm are linearly independent, we calculate the condition
number of W. By performing several runs of our algorithm
for rank 50 with different (W, H )-initializations, we determine

Condition Number for W = 24 £+ 2
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This number is low enough to give us confidence in the W
returned by the algorithm. In practice, a high condition number
(in the thousands) can indicate that the rank needs to be
reduced.

E. Robustness of Algorithm

The factorization produced by Algorithm 1 is not unique.
However, in all observed cases, two successive instances of
W differ mostly by a permutation of the signatures. Figure
[26] shows the heatmap of the correlation coefficients of TV
calculated from two runs of the algorithm after applying a
suitable permutation. We observe high correlation coefficients
on the diagonals.

V. OBSERVATIONS ENABLED BY DATA REDUCTION

The goal of this mathematical analysis is to enable discovery
of broad patterns and identifying anomalous behavior of
traffic. First, we note that the signatures (and hence columns of
D) are roughly periodic, with a periodicity of 7 days. This was
confirmed by computing the autocorrelation of each signature
as well as columns of D. Deviation from this periodic pattern
could arise due to many events, e.g., holidays, elections,
extreme weather, or from noise present in D.

Due to the periodicity, we can look at one day of the
week across the entire year, e.g. all Mondays and compute
the average traffic for that day. Next, we determine which
dates have relative taxi counts that differ significantly from
the average. In the subsections below, we list some of these
anomalous traffic patterns. It should be noted that we are
presenting here just a selection from the vast number of
observations possible using the W-matrix we have obtained.

A. Hurricane Irene

Figure [38] shows Signature 0 capturing a near-shutdown of
taxi traffic on August 27, 2011. This may have been caused by
Hurricane Irene hitting NYC. There was an early warning and
all subways and buses were shut down at noon on Saturday,
August 27. A zoned taxi system was implemented at 9am and
taxis were thereafter running flat fares instead of meters [42].

30
Columns of W1 3

Fig. 6. Heatmap of correlation coefficients
of columns of W from two runs of algo-

Signature 21 on Saturdays
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Fig. 7. Signature 21 during the Wisconsin
Labor Rally

All other signatures also show similar behavior on and around
August 28.

B. Wisconsin Labor Rally

Figure [27) shows the behaviour of Signature 21 on February
26, 2011. The traffic deviates from the average Saturday trend.
This may have been caused a Labor Rally that took place
near the New York City Town Hall on this day in support
of Wisconsin public employees [43]. Figure [25] shows that
Signature 21 is used by links near the Town Hall, which can
be seen as further evidence connecting the rally to this traffic
deviation.

C. Christmas Day

Anomalous behavior was also observed on Christmas Day.
This can be seen in Figure [39] for Signature 0 and Figure 310]
for Signature 4.

D. Endemic Signatures

We note that of the 50 signatures, some tend to be geograph-
ically restricted (called endemic), while others are spread out
over larger areas (called dispersive).

The endemic signatures might sometimes explain traffic
densities only on a single but long stretch of road. For example,
Figure 12 shows that Signature 10 is largely used by the the
north-bound 3 Avenue and streets like Bowery, Lafayette
St. and the southernmost part of Broadway that feed into 3™
Avenue. Similarly, Figure 14 shows Signature 40 being used
exclusively by a small section of the south-bound Broadway
traffic near Central Park.

In some other cases, signatures can be seen as having a
lateral sphere of influence in that they affect not only one street
but also other feeding into or out of the street transversally —
for example, Signature 24 as seen in Figure 13.

VI. FUTURE REMARKS

In this paper, we proposed a scale-free framework for
studying the trade-off between the error of approximation, the
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Figure. Some examples of endemic signatures, and one example of a dispersive signature.

sparsity (i.e. the number of signatures), and the dimension of
the proposed low-rank factorization. One can further expand
this analysis to the less dense traffic in New York City 2011.
This structure can provide direction for future research on
comparing the complexity of traffic patterns in different cities
or under different circumstances. Various city attributes can
be connected to different traffic conditions and signatures,
which opens the possibility of future analysis on problems
such as urban planning and decision making. Another avenue
for further research is to combine our quantitative tool with
the element of probability. In other words, one would use this
format to predict the future state of traffic signatures on a
given link (road).

VII. CONCLUSION

This article contributes to the study of large-scale urban
traffic matrices via low-rank factorization. We execute a non-
negative, sparse matrix factorization algorithm to study the
complexity of city traffic, and explain its underlying behavior
with a small number of signatures. A multiplicative numerical
procedure is examined in order to solve the factorization
problem and a quantitative measure of sparsity is presented.
The algorithm also enforces a normalization constraint on the

solution which serves as a key step in making the results
interpretable as temporal patterns. This factorization algorithm
is then applied to a 2011 New York City traffic data set, and
anomalous traffic patterns are interpreted from the results. We
were able to explain the complexity of dense New York traffic
in 2011 with one to eight signatures per link (road segment).
In this process, we were able to identify several city-wide
attributes and lay the ground work for future analyses.
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APPENDIX

Let’s write down the calculations leading to the Algorithm
I of Section [

Writing £, of (6) out gives

Egn(W,H) = > |Dyy— (WH)is 2
(t,0)eN
N L 2 N T
3 (Y H) YW,
n=1 \/=1 n=1t=1

We should be able to solve this by alternating between
minimization problems in W and H. Namely, if we start with
a fixed (W, H) € RN x RY % we can construct a descent
step for the function £g,,(W,-) and then, letting H' be the
result, we can construct a descent step for £g (-, H'). This
hopefully gives us an improvement in the pair (W, H), and
we can then proceed iteratively.

The gradients of &g, in the directions of W and H are



given by
0&3.y
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+28 (Y H,;
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Let’s review the ideas of [40]. We want to iteratively find
the critical points of £3 ,; i.e., the solutions of
(WH]\ H" — [DI]yH" +3W =0
W WH] = WDy + By H =0
Let’s now construct a multiplicative descent rule (which

need not be gradient descent; see [32]). Fix (W,H) €
RN x RY*E. Assume that

0Es
) O,
aHn,Z -

we can then decrease the value of g, by decreasing H,, ¢.
Let’s rewrite (T3)) as

—2(WT[D-WH]y), ,+28(xxnH)ne >0

13)

or rather
(WT [WH]y), ,+BAnxnH)ne > (W [D]y)

since W, H, and D all have nonnegative entries, both sides of
this equation are nonnegative, so this in turn is x" ,(W, H) <
1 where

n,l’

(WT [D]N)n,f
(WT [WH]/\/)n)g + ﬂ(lNXNH)n,Z ’

Thus, another way to decrease H, , while still retaining
nonnegativity is to multiply it by x” ,(W, H). Reviewing these
9Es. '

OH, 0

and can again multiply by x/ ,(W, H). Finally, if

def
XZ,@(W H) =

steps, we also see that if < 0, we want to increase H,, ¢,
2eP  _

OHp ¢ — 0
(i.e., we have found a critical point) x" ,(W,H) = 1, so

multiplying H,, ; by XZ,@(VVv H) leaves H,, o unchanged.

The update rule for W, ,, is similar. To start, let’s assume

that
) o _
oWt ’

then we can decrease £3,,, by decreasing W, ,,. We can rewrite

(14)

([ as

—-2([D-WH] H" + W), >0.
We can again rewrite this as the comparison of two nonnega-
tive quantities;

(WH]\ H" + [ToDo : q)W), > ([D],y HT)

t,n t,n’

This in turn is equivalent to x;’, (W, H) < 1 where

([D]N HT)t,n
N HT 4 [ToDo : nW1)

w def
Xt,n(vv’ H) ([WH] in
In other words, we can decrease W;, by multiplying by
Xi'n (W, H). One can similarly see that if aawiﬁn < 0, gradient
descent again increases or decreases W with the same sign as
multiplying by x;*,, (W, H).

Our proposed update rule for W and H is now

t/,n = Wt,nX?,}n(VVa H)
H, , = Hn,ZXZ,z(W H).

which is equivalent to (II). These equations follow from [40].
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